Đặt A = biểu thức cần tính. Ta có:
(n+2)2=(n+2)(n+3-1)=(n+2)(n+3)-(n+2)
(n+4)2=(n+4)(n+5-1)=(n+4)(n+5)-(n+4)
....
(n+100)2=(n+100)(n+101-1)=(n+100)(n+101)-(n+100)
A=n2+(n+2)(n+3)-(n+2)+(n+4)(n+5)-(n+4)+...(n+100)(n+101)-(n+100)
=> A=n2+[(n+2)(n+3)+(n+4)(n+5)+...+(n+100)(n+101)]-(50n+2+4+...+100)
=> A=n2-(50n+2550)+[(n+2)(n+3)+(n+4)(n+5)+...+(n+100)(n+101)]
=> \(A=n^2-50\left(n+51\right)+\frac{\left(n+100\right)\left(n+101\right)\left(n+102\right)}{3}\)