xét n tích a1a2+a2a3+...+ana1, mỗi tích có giá trị bằng 1 hoặc -1 mà tổng của chúng =0 nên số tích có giá trị 1 bằng số tích có giá trị -1 và đều = n/2 => n chia hết cho 2
bây giờ ta chứng minh rằng số tích có giá trị bằng -1 cũng là số chẵn
thật vậy xét
A=(a1.a2)(a2.a3)...(an-1.an) (an.a-1)
ta thấy A =a1^2.a2^2....an^2 nên A>0 , chứng tỏ số tích có giá trị -1 cũng là số chẵn tức là n/2 là số chẵn , do đó n chia hết cho 4
a1a2+a2a3+...+ana1 = 0
Mà a1, a2, a3,...,an mỗi số nhận giá trị -1 hoặc 1 => am.an = 1 hoặc -1 (am,an là bất kì số nào trong dãy trên) và tổng trên có số giá trị nhận -1 và số giá trị nhận 1 bằng nhau.
Số số hạng trong tổng trên là số chẵn.
a1a2+a2a3+...+ana1 có 4 số hạng trở lên.
=> n chia hết cho 4 (đpcm)
cho a1/a2=a2/a3=a3/a4=...=an/an+1 thì (a1+a2+a3+...+an/a2+a3+a4+...+an+1)^n=a1/an+1
GIẢI HỘ mk nha
Ta có: x2 – x – 12 = x2 – x – 16 + 4
= (x2 – 16) – (x – 4)
= (x – 4).(x + 4) – (x – 4)
= (x – 4).(x + 4 – 1)
= (x – 4).(x + 3)