Cho số tự nhiên n lớn hơn hoặc bằng 2. gọi p1, p2, ... ,pn là những số nguyên tố sao cho pn nhỏ hơn hoặc bằng n + 1. đặt A = p1 . p2 . ... . pn. Chứng minh rằng trong dãy số các số nguyên tố liên tiếp A + 2, A +3, ... , A + (n + 1) không chứa 1 số nguyên tố nào
1. Tìm số nguyên tố, biết rằng số đó bằng tổng của hai số nguyên tố và bằng hiệu của hai số nguyên tố
2. Cho ba số nguyên tố lớn hơn 3, trong đó số sau lớn hơn số trước là d đơn vị. Chứng minh rằng d chia hết cho 6
3. Cho p là số nguyên tố lớn hơn 3. Biết p + 2 cũng là SNT. Chứng minh rằng p + 1 chia hết cho 6
4. Cho p và p + 4 là các SNT ( p > 3). Chứng minh rằng p + 8 là hợp số
5. Cho p và 8p - 1 là các SNT. Chứng minh rằng 8p + 1 là hợp số
6. Tìm tất cả các số tự nhiên n để mỗi số sau đều là SNT : n + 1 : n + 3 ; n + 7 ; n + 9 ; n + 13 ; n + 15
Giúp mk vs, mk đang cần gấp lắm nhé! Ai lm trc mk sẽ k cho. Các cậu bt lm bài nào thì chỉ cho mk nhé!
Bài 1:
a) Tìm số nguyên tố biết rằng số đó bằng tổng của hai số nguyên tố và hiệu của hai số nguyên tố
b) Cho P là số nguyên tố lớn hơn 3, biết P + 2 cũng là số nguyên tố. Chứng minh rằng P + 1 chia hết cho 6
c) Cho N là số nguyên tố lớn hơn 3. Hỏi N2 + 2018 là số nguyên tố hay hợp số. Vì sao?
Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố
Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p
câu a: cho n thuộc N*, biet a^n chia hết cho 5, chứng minh rằng n^2 chia cho 3 dư 1.
Câu b : cho p là 1 số nguyên tố lớn hơn 3. Hỏi p^2 + 2003 là số nguyên tố hay hợp số?
Chứng minh răng:mọi số nguyên tố lớn hơn 3 đều có dạng 3k+1 hoặc 3k+2(k thuộc N)
b,Cho p và p+4 là các số nguyên tố (p>3)
chứng minh rằng p+8 là hợp só
c,Cho p là một số nguyên tố lớn hơn 3
Chứng tỏ rằng :(p-1)(p+1) luôn chia hết cho 24
Cho A= n^2-1 với n là số nguyên tố lớn hơn 3. Chứng minh rằng A chia hết cho 24
1 Cho số tự nhiên n với n > 2. Biết 2n - 1 là 1 số nguyên tố. Chứng tỏ rằng số 2n + 1 là hợp số
2 Cho 3 số: p, p+2014.k, p+2014.k là các số nguyên tố lớn hơn 3 vá p chia cho 3 dư 1. Chứng minh rằng k chia hết cho 6
3 Cho 2 số tự nhiên a và b, trong đó a là số lẻ. Chứng minh rằng 2 số a và a.b+22013là 2 số nguyên tố cùng nhau
4 Cho m và n là các số tự nhiên, m là số lẻ. Chứng tỏ rằng m và mn+8 là 2 số nguyên tố cùng nhau
5 Cho A=32011-32010+...+33-32+3-1. Chứng minh rằng a=(32012-1) : 4
6 Cho số abc chia hết cho 37. Chứng minh rằng số bca chia hết cho 37
a) cho n là một số không chia hết cho 3. Chứng minh rằng n^2 chia cho 3 dư 1
b) cho p là một số nguyên tố lớn hơn 3. hỏi p^2 + 2003 là số nguyên tố hay hợp số