Với mọi số tự nhiên n\(\ge\)2 hãy so sánh
a) \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)với 1
b)\(B=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\)với\(\frac{1}{2}\)
Với số tự nhiên n \(\ge\)2 hãy so sánh \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{n^2}\)với 1
Với 1 số tự nhiên n\(\ge\)2 hãy so sánh
A] A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)vs 1
b] B=\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\)vs\(\frac{1}{2}\)
Với mọi số tự nhiên n \(\ge\)2, so sánh A với 1 biết:
A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)
2) Cho
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.....+\frac{1}{n^2}\)
Với mọi \(n\ge2;n\in N\)
So sánh A với 1
Với mọi \(n\in N,n\ge2\)
So sánh :
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)với 1
Với mọi số tự nhiên n \(\ge\)2. so sánh
a, \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\) với 1
b, \(B=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...\frac{1}{\left(2n\right)^2}\) với 1/2
4) với mọi số tự nhiên n>=2, hãy so sánh:
A=\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\) với 1
B=\(\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\) với 1/2
Cho Sn= \(\frac{1^1-1}{1}+\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+...+\frac{n^2-1}{n^2}\) (Với \(n\in N\) và n>1)
CMR : Sn k là số nguyên