Khi có n điểm, ta có n cách chọn điểm đầu và n-1 cách chọn điểm cuối. Nên ta sẽ có n(n-1) cách xác định số vecto khác 0 thuộc n điểm trên
Khi có n điểm, ta có n cách chọn điểm đầu và n-1 cách chọn điểm cuối. Nên ta sẽ có n(n-1) cách xác định số vecto khác 0 thuộc n điểm trên
Cho tam giác ABCD và lấy điểm M nằm trong tam giác .Gọi A',B',C' là TĐ của BC,CA,AB và N,P,Q là các điểm đối xứng với M qua A',B',C'.C/m
a) vecto AQ=vecto CN và vecto AM=vecto PC
b) AN,BP,CQ đồng quy
Cho tam giác ABC
a. chứng minh G là trọng tâm tam giác khi vecto GA+ vec to GB + vesto GC= vecto 0
b, với 1 điểm M bất kì ta có vecto MA+ vecto MB+ vecto MC=3 vecto MG
Cho tam giác ABC trọng tâm G.Gọi I là trung điểm của AD chứng minh rằng vectơ AB +AC +6GI=vecto 0
Cho 3 điểm A, B, C không thẳng hàng có thể thành lập được bao nhiêu vecto?
khái niệm
cho 2 vector a và b từ một điểm O bất kì vẽ vecto OA = a , từ điểm A vẽ vector AB = b , khi đó OB được gọi là tổng của vecto a và b ( OB = a + b)
giải bài tập sau theo khái niệm trên
cho tam giác ABC là tam giác đều, cạnh có độ dài = a trọng tâm g vẽ và tính độ dài
AB + BC / AB + AC / AI + BC / BA + CI / AB + CB /
mọi người có thể giải dùm mình bài này với giải thích được tí ko ạ, mình chỉ con mình học ạ
Cho tam giác abc trọng tâm g
Dựng vecto ad = gc; vecto de= gb
Cm vecto ge = vecto 0
Cho tam giác ABC . DỰng điểm B' sao cho \(\overrightarrow{AB'}=\overrightarrow{BC}\) và dựng điểm A' sao cho \(\overrightarrow{CA'}=\overrightarrow{AB}\) . tiếp tục dựng thêm điểm C' sao cho \(\overrightarrow{BC'}=\overrightarrow{CA}\).
a, Chứng minh \(\overrightarrow{AB'}\) là vecto đối của \(\overrightarrow{AC'}\) và A là trung điểm của đoạn thẳng B'C'
b. chứng minh AA',BB',CC' cắt nhau tại 1 điểm
Khi nào thì vecto AB và vecto AC ngược hướng
Cho lúc giác đều ABCDEF.Hãy vẽ vec tơ bằng vec tơ \(\overrightarrow{AB}\) thỏa mãn:
a)Có điểm đầu là B,F,C. b)Có điểm cuối là F,D,C.