Cho a,b,c là độ dài các cạnh của tam giác và x,y,z là độ dài tương ứng của các đường phân giác của góc đối diện với cạnh đó. Chúng minh rằng:
a) x <\(\frac{2bc}{b+c}\)
b) \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
cho a;b;c là độ dài 3 cạnh tam giác ABC và x;y;z là độ dài các đường phân giác trong của các góc với các cạnh đó
c/m: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
1,a/giải hệ \(x+y+\frac{1}{x}+\frac{2}{y}=5\)
và \(x^2+y^2+\frac{1}{x^2}+\frac{4}{y^2}=7\)
b/ giải phương trình \(\frac{x+\sqrt{1-x^2}}{1-2x^2}=1\)
2,a/ các cạnh a,b,c của tam giác ABC thoả mãn đẳng thức sau.hỏi tam giác ABC là tam giác gì?
\(\frac{1}{P}=\frac{1}{P-a}-\frac{1}{P-b}-\frac{1}{P-c}\)
b/ các số dương x,y,z thoả mãn \(\sqrt{x}+\sqrt{y}+\sqrt{z}=2\)
và x+y+z=2
hãy tính \(P=\sqrt{\left(1+X\right)\left(1+y\right)\left(1+z\right)}\left(\frac{\sqrt{x}}{1+x}+\frac{\sqrt{y}}{1+y}+\frac{\sqrt{z}}{1+z}\right)\)
3, ba đường tròn (O,R),(O1,R1).(O2,R2) vời R<R1<R2 tiếp xúc ngoài với nhau từng đôi một đồng thời cùng tiếp xúc với một đường thẳng,gọi S, S1, S2 lần lượt là diện tích các hình tròn tâm O,O1,O2.
Chứng minh \(\frac{1}{\sqrt[4]{S}}=\frac{1}{\sqrt[4]{S1}}+\frac{1}{\sqrt[4]{S2}}\)
4,Cho đường tròn tâm O bán kính R và đường tròn tâm O' bán kính R' cắt nhau tại A Và B. TRên tia đổi của tia AB,lấy điểm C,Kẻ tiếp tuyến CD.CE với đường tròn tâm O(D,E là các tiếp điểm và E nằm trong đường tròn tâm O') đường thẳng AD.AE cắt đường tròn tâm O' lần lượt tại M,N (M và N khác A) tia DE cắt MN tại I ,chứng minh rằng
a, tam giác MIB đồng dạng với tam giác AEB
b. O'I vuông góc với MN
5, tam giác ABC Có góc A không nhọn, BC =a,CA=b,AB=c
Tìm Min của P=(1-a/b)(1-b/c)(1-c/a)
Cho a, b, c lần lượt là độ dài 3 cạnh của một tam giác thỏa mãn 2ab + 3bc + 4ca = 5abc.
Tìm GTNN : \(P=\frac{7}{a+b-c}+\frac{6}{b+c-a}+\frac{5}{a+c-b}\)
Theo mình nghĩ thì bài này áp dụng cosi \(\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\ge\frac{1}{x+y}\)
Cho tam giác ABC và ba điểm A’, B’, C’ lần lượt nằm trên ba cạnh BC, CA, AB sao cho AA’, BB’, CC’ đồng quy. (A’, B’, C’ không trùng với các đỉnh của tam giác ABC). Chứng minh rằng:
\(\frac{A'B}{A'C}.\frac{B'C}{B'A}.\frac{C'A}{C'B}=1\)
Cho điểm M nằm trong tam giác ABC đều cạnh a. Gọi x, y, z lần lượt là khoảng cách từ M đến BC, AC, AB. Gọi S là diện tích tam giác có ba cạnh AM, BM, CM. Chứng minh rằng: S\(\le\frac{1}{3}\).SABC
Giúp mình !!!!!!!!
1. Tam giác ABC với D,E,F lần lượt thuộc cạnh BC,CA,AB sao cho AD,BE,CF đồng quy tại M. chứng minh \(\frac{DM}{AD}+\frac{FM}{CF}+\frac{EM}{BE}=1\)
2. Tam giác ABC với M tùy ý nằm trong tam giác. Đường thẳng đi qua M và trọng tâm G của tam giác cắt BC,CA,AB lần lượt tại A',B',C'. chứng minh: \(\frac{MA'}{GA'}+\frac{MB'}{GB'}+\frac{MC'}{GC'}=3\)
3. Tam giác nhọn ABC, phân giác AD. M,N lần lượt là hình chiếu của D trên AC,AB, P là giao điểm BM, CN. chứng minh AP vuông góc BC
Gọi a,b,c là độ dài 3 cạnh của 1 tam giác có 3 góc nhọn. Chứng minh rằng với mọi số thực x,y,z ta luôn có \(\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}\)lớn hơn \(\frac{2x^2+2y^2+2z^2}{a^2+b^2+c^2}\)
Cho a,b,c lần lượt là các cạnh và nữa chu vi một tam giác. CHứng Minh bất đẳng thức
\(\frac{1}{p-a}+\frac{1}{p-b}+\frac{1}{p-c}\ge2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)