Cho một nửa đường tròn đường kính AB. Điểm M chạy trên nửa đường tròn. Kẻ MH vuông góc với AB tại H. Đặt MH = x. Chứng minh rằng hai tam giác AHM và MHB đồng dạng.
Cho một nửa đường tròn đường kính AB. Điểm M chạy trên nửa đường tròn. Kẻ MH vuông góc với AB tại H. Đặt MH = x. Khi M chuyển động thì x thay đổi, do đó tích AH.BH cũng thay đổi theo. Kí hiệu tích AH.BH bởi P(x). Hỏi P(x) có phải là một hàm số của biến số x hay không? Viết công thức biểu thị hàm số này..
Cho nửa đường tròn tâm O có đường kính AB. Gọi M là điểm bất kì thuộc nửa đường tròn, H là chân đường vuông góc kẻ từ M đén AB. Vẽ đường tròn (M; MH). Kẻ các tiếp tuyến AC, BD với đường tròn tâm M (C và D là các tiếp điểm khác H). Chứng minh rằng khi điểm M di chuyển trên nửa đường tròn (O) thì tổng AC + BD không đổi
Cho nửa đường tròn tâm (O) có đường kính AB = 2R. Kẻ hai tiếp tuyến Ax , By của nửa đường tròn (O) tại A và B (Ax , By và nửa đường tròn thuộc cùng một nửa mặt phẳng có bờ là đường thẳng AB). Qua điểm M thuộc nửa đường tròn(M khác A và B), kẻ tiếp tuyến với nửa đường tròn, cắt tia Ax và By theo thứ tự tại C và D
1) Chứng minh tam giác COD vuông tại O
2) Chứng minh AC.BD = R2
3)Kẻ MH vuông góc AB (H thuộc AB). Chứng minh rằng BC đi qua trung điểm của đoạn MH
giúp mik với
Cho nửa đường tròn tâm O có đường kính AB = 2R. Kẻ hai tiếp tuyến Ax. By của nửa đường tròn (O) tại A, B (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng có bờ là đường thẳng AB). Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn cắt tia Ax và By theo thứ tự tại C và D.
A) chứng minh AC. BD=R2
B) kẻ MH vuông góc AB(H thuộc AB) chứng minh :OC song song với BM.
C) chứng minh rằng BC đi qua trung điểm đoạn MH
Cho nửa đường tròn tâm O có đường kính AB. Gọi M là điểm bất kì thuộc nửa đường tròn, H là chân đường vuông góc kẻ từ M đén AB. Vẽ đường tròn (M; MH). Kẻ các tiếp tuyến AC, BD với đường tròn tâm M (C và D là các tiếp điểm khác H). Giả sử CD và AB cắt nhau tại I. Chứng minh rằng tích OH.OI không đổi
3. Cho nửa đường tròn (o) đường kính AB , M là điểm tùy ý trên nửa đường tròn CM khác AB , kẻ MH vuông góc AB ( H thuộc AB ) , Trên cùng một nửa mặt phẳng bờ AB chứ nửa đường tròn . Vẽ 2 nửa đường tròn tâm O1 , đường kính AH và tâm O2 đường kính BH . MA và MB cắt 2 nửa đường tròn O1 và O2 lần lượt là P và Q
a) chứng minh MH=PQ
b) chứng minh tam giác MPQ và tam giác MBA đồng dạng
c) chứng minh PQ là tiếp tuyến chung của 2 đường tròn O1 và O2
Giải giúp em với ạ ! em đang cần gấp bài này .
Cho nửa đường tròn (O) đường kính AB. Lấy M là điểm tuỳ ý trên nửa đường tròn (M khác A và B). Kẻ MH vuông góc với AB (H ∈ AB). Trên cùng nửa mặt phang bờ AB chứa nửa đường tròn (O) vẽ hai nửa đường tròn tâm O 1 , đường kính AH và tâm O 2 , đường kính BH. Đoạn MA và MB cắt hai nửa đường tròn ( O 1 ) và ( O 2 ) lần lượt tại P và Q. Chứng minh:
a, MH = PQ
b, Các tam giác MPQ và MBA đồng dạng
c, PQ là tiếp tuyến chung của hai đường tròn ( O 1 ) và ( O 2 )