b) Ta sẽ chứng minh rằng tổng số các giá trị \(c_i\)và \(d_j\)nhận giá trị \(-1\)là một số chẵn.
Thật vậy, giả sử bảng ban đầu đang là chỉ toán số \(1\).
Ta sẽ điền thêm các dấu \(-\)vào các ô có ghi số \(-1\).
Với mỗi bước điền như vậy, thì tích các số trên hàng và cột chứa ô ta vừa điền đều thay đổi giá trị từ \(1\)sang \(-1\)hoặc ngược lại, nên tổng các tích các số trên dòng và cột có giá trị \(-1\)sẽ tăng thêm \(2\)hoặc giảm xuống \(2\)hoặc không đổi.
Mà ban đầu số các tích của các số trên dòng và cột là \(0\).
Do đó ta có đpcm.
Ta có:
\(d_1+d_2+...+d_n+c_1+c_2+...+c_n=0\)(1) khi và chỉ khi số giá trị \(c_i\)và \(d_j\)nhận giá trị \(-1\)và \(1\)bằng nhau, tức là cùng bằng \(n\).
Do đó với \(n\)chẵn thì (1) có thể xảy ra, \(n\)lẻ thì (1) không thể xảy ra.