1. Tìm n thuộc N để(n+3)(n+4)là một số chính phương
2. Tìm số nguyên tố p để
a)p+10 và p+20 đều là số nguyên tố
b)p+2 và p+94 đều là số nguyên tố
c)p+6;p+8;p+12;p+14 đều là số nguyên tố
3. Cho p1 bé hơn p2 là hai số nguyên tố lẻ liên tiếp
CMR:(p1+p2) :2 là hợp số
n>2 và n ko chia hết cho 3.chứng minh rằng n2-1 và n2+1 ko thể đồng thời là số nguyên tố
cho p và p+4 là các số nguyên tố(p>3).chứng minh p+8 là hợp số
cho p và p+8 là số nguyên tố (p>3).hỏi p+100 là số nguyên tố hay hợp số
chứng tỏ n+3 và 2n+5 ( n thuộc N ) là 2 số nguyên tố cùng nhau
Cho m và n là các số tự nhiên, m là số tự nhiên lẻ. Chứng tỏ rằng m và mn+8 là hai số nguyên tố cùng nhau.
B1:Tìm a,b thuộc N biết: a+b=252 và ƯCLN(a,b)=42
B2: Tìm x thuộc N biết::12 chia hết cho x+3
B3:Chứng minh với mọi n thuộc N, các số sau là 2 số nguyên tố cùng nhau : 2n+1 và 6n+5
1.Cho a=n+8/2n -5 (n thuộc N*)
Tìm các giá trị của n để a là số nguyên tố.
2. Có tồn tại số tự nhiên n nào để hai phân số:
7n - 1/4 và 5n +3/12 đồng thời là các số tự nhiên.
Ta gọi p và q là 2 số nguyên tố liên tiếp nếu giữa p và q ko có số nguyên tố nào.
Tìm 3 số nguyên tố liên tiếp p; q; n sao cho p2; q2; n2 cũng là số nguyên tố.
Ta gọi p và q là 2 số nguyên tố liên tiếp nếu giữa p và q ko có số nguyên tố nào.
Tìm 3 số nguyên tố liên tiếp p; q; n sao cho p2; q2; n2 cũng là số nguyên tố.
Cho a = 1+2+3+4+.......+n và b=2n+1(với n thuộc N, n lớn hơn hơặc bằng 2)CM rằng a và b la 2 số nguyên tố cùng nhau