Em kéo xuống trang 40, mục số 3:
Một số mẹo nhỏ với Casio.pdf - Google Drive
Em kéo xuống trang 40, mục số 3:
Một số mẹo nhỏ với Casio.pdf - Google Drive
cho x,y thỉa mãn điều kiện \(3\left(x\sqrt{y-9}+y\sqrt{x-9}\right)=xy\)
Tính giá trị của biểu thức \(S=\left(x-17\right)^{2018}+\left(y-19\right)^{2019}\)
Ko dùng BĐT Cô-Si và thêm bớt thành hằng đẳng thức
Nghĩ cách khách giúp mình (P/s: dùng Bunhia-coposxki)
Chứng minh đẳng thức
\(\left(4-\sqrt{7}\right)^2=23-8\sqrt{7}\)
\(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
\(\dfrac{\sqrt{4-2\sqrt{3}}}{1+\sqrt{2}}:\dfrac{\sqrt{2}-1}{\sqrt{3}+1}=2\)
\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}=-1,5\)
Chứng minh đẳng thức
\(\left(4-\sqrt{7}\right)^2=23-8\sqrt{7}\)
\(\sqrt{9-4\sqrt{5}}-\sqrt{5}=-2\)
\(\dfrac{\sqrt{4-2\sqrt{3}}}{1+\sqrt{2}}:\dfrac{\sqrt{2}-1}{\sqrt{3}-1}=2\)
\(\left(\dfrac{2\sqrt{3}-\sqrt{6}}{\sqrt{8}-2}-\dfrac{\sqrt{216}}{3}\right).\dfrac{1}{\sqrt{6}}=-1,5\)
\(\sqrt{9+8\sqrt{2}}\)
Giúp mình tách thành hằng đẳng thức với. Mình có hỏi thầy nhưng thầy bảo đề k sai :((
Chứng minh bất đẳng thức :
\(\frac{1}{\left(\sqrt{2}+\sqrt{5}\right)^3}+\frac{1}{\left(\sqrt{5}+\sqrt{8}\right)^3}+...+\frac{1}{\left(\sqrt{95}+\sqrt{98}\right)^3}< \frac{1}{19}\)
có ai biết giải bài này k hộ mình vs ( giải chi tiết hộ mình nhé)
1, \(\left(\sqrt{19}-3\right)\left(\sqrt{19}+3\right)\)
2, \(\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
3, \(\sqrt{8+\sqrt{60}}+\sqrt{45}-\sqrt{12}\)
4, \(\sqrt{9-4\sqrt{5}}-\sqrt{9+4\sqrt{5}}\)
cho x=\(\left(\dfrac{\sqrt[3]{8-3\sqrt{5}}+\sqrt[3]{64-12\sqrt{20}}}{\sqrt[3]{57}}\right)\sqrt[3]{8+3\sqrt{5}}\);y=\(\left(\dfrac{\sqrt[3]{9}-\sqrt{2}}{\sqrt[3]{3}+\sqrt[4]{2}}+\dfrac{\sqrt{2}-9\sqrt[3]{9}}{\sqrt[4]{2}-\sqrt[3]{81}}\right)\)
a rút gọn x và y
b tính T = xy
CM các đẳng thức sau:
\(\sqrt{3-\sqrt{5}}(3+\sqrt{5})\left(\sqrt{10}-\sqrt{2}\right)=8\)
\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}=2}\)
Chứng minh đẳng thức:
\(x+y+z-3\sqrt[3]{xyz}=\frac{1}{2}\left(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\right)\left(\left(\sqrt[3]{x}-\sqrt[3]{y}\right)^2+\left(\sqrt[3]{y}-\sqrt[3]{z}\right)^2+\left(\sqrt[3]{z}-\sqrt[3]{x}\right)^2\right)\)