Đặt \(A=\frac{1}{1.6}+\frac{1}{6.11}+\frac{1}{11.16}+...+\frac{1}{496.501}\)
\(\Rightarrow5A=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{496}+\frac{1}{501}\)
\(\Rightarrow5A=1-\frac{1}{501}=\frac{500}{501}\)
\(\Rightarrow A=\frac{500}{501}:5=\frac{500}{501}.\frac{1}{5}=\frac{100}{501}\)
k mik nhé
=1/5x(1-1/6+1/6-1/11-1/16+...+1/496-1/501
=1/5x(1-1/501)
=1/5x500/501
=100/501
\(\frac{1}{1\times6}+\frac{1}{6\times11}+\frac{1}{11\times16}+...+\frac{1}{491\times496}+\frac{1}{496\times501}\)
\(=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{491}-\frac{1}{496}+\frac{1}{496}-\frac{1}{501}\)
\(=1-\frac{1}{501}\)
\(=\frac{500}{501}\)
P/s tham khảo nha
sorry mình lộn nha
Ghi nhầm
nên dẫn đến đề sai
Đặt: \(A=\frac{1}{1\times6}+\frac{1}{6\times11}+\frac{1}{11\times16}+...+\frac{1}{491\times496}+\frac{1}{496\times501}\)
\(A\times5=\frac{5}{1\times6}+\frac{5}{6\times11}+\frac{5}{11\times16}+...+\frac{1}{491\times496}+\frac{1}{496\times501}\)
\(A\times5=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{491}-\frac{1}{496}+\frac{1}{496}-\frac{1}{501}\)
\(A\times5=1-\frac{1}{501}\)
\(A\times5=\frac{500}{501}\)
\(A=\frac{500}{501}:5\)
\(A=\frac{100}{501}\)
Vậy: \(A=\frac{100}{501}\)
Dm nghĩ lâu quá...haha ra rồi 100/501