Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho mặt cầu S(0;R) và mặt phẳng ( α ). Gọi d là khoảng cách từ O tới ( α ). Khi d < R thì mặt phẳng ( α ) cắt mặt cầu S(O;R) theo giao tuyến là đường tròn có bán kính bằng:
A. R 2 + d 2 B. R 2 - d 2
C. R d d. R 2 - 2 d 2
Cho mặt cầu S(O;R) và mặt phẳng (α). Biết khoảng cách từ O tới (α) bằng d. Nếu d < R thì giao tuyến của mặt phẳng (α) với mặt cầu S(O;R) là đường tròn có bán kính bằng bao nhiêu?
A. R d
B. R 2 + d 2
C. R 2 - d 2
D. R 2 - 2 d 2
Cho mặt cầu S(O; R) và mặt phẳng (α). Biết khoảng cách từ O tới (α) bằng d. Nếu d < R thì giao tuyến của mặt phẳng (α) với mặt cầu S(O; R) là đường tròn có bán kính bằng bao nhiêu?
A. R d
B. R 2 + d 2
C. R 2 - d 2
D. R 2 - 2 d 2
Trong không gian Oxyz cho các mặt phẳng (P): x - y + 2z + 1= 0, (Q): 2x + y + z - 1 = 0. Gọi (S) là mặt cầu có tâm thuộc trục hoành, đồng thời (S) cắt mặt phẳng (P) theo giao tuyến là một đường tròn có bán kính bằng 2 và (S) cắt mặt phẳng (Q) theo giao tuyến là một đường tròn có bán kính bằng r. Xác định r sao cho chỉ có đúng một mặt cầu (S) thỏa yêu cầu.
A. r = 3
B. r = 3 2
C. r = 2
D. r = 3 2 2
Tìm bán kính R của mặt cầu (S) tâm I - 1 ; 2 ; 4 biết (S) cắt mặt phẳng (Oxy) theo giao tuyến là đường tròn (C) có bán kính r = 2 .
Cho khối cầu (S) có tâm I và bán kính R= 2 3 , gọi (P) là mặt phẳng cắt khối cầu (S) theo thiết diện là hình tròn (C) . Tính khoảng cách d từ I đến (P) sao cho khối nón có đỉnh I và đáy là hình tròn (C) có thể tích lớn nhất.
Cho mặt cầu (S) tâm O, bán kính R = 3. Mặt phẳng (P) cách O một khoảng bằng 1 và cắt (S ) theo giao tuyến là đường tròn (C) có tâm H . Gọi T là giao điểm của tia OH và (S) , tính thể tích V của khối nón có đỉnhT và đáy là hình tròn (C ).
Cho mặt cầu (S) có tâm O, bán kính r. Mặt phẳng ( α ) cắt mặt cầu (S) theo giao tuyến là đường tròn (C) có bán kính R. Kết luận nào sau đây sai?
A. R = r 2 + d 2 ( O , ( α ) )
B. d ( O , ( α ) ) < r
C. Diện tích của mặt cầu là S = 4 πr 2
D. Đường tròn lớn của mặt cầu có bán kính bằng bsn kính mặt cầu.
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng ( P ) : x − y + 2 z + 1 = 0 và ( Q ) : 2 x + y + z − z = 0. Gọi (S) là mặt cầu có tâm thuộc Ox, đồng thời (S) cắt mặt phẳng (P) theo giao tuyến là một đường tròn có bán kính bằng 2 và cắt mặt phẳng (Q) theo giao tuyến là một đường tròn có bán kính r. Xác định r sao cho chỉ có duy nhất một mặt cầu (S) thỏa mãn điều kiện bài toán
A. r = 3 2 2 .
B. r = 10 2 .
C. r = 3 .
D. r = 14 2 .