Mua 1 được 3: Tặng thêm VIP và bộ đề kiểm tra cuối kỳ I khi mua VIP </a><script>console.log(1)</script>
Trong không gian Oxyz, cho mặt cầu (S): (x-1)²+ (y+2)²+ (z-3)²=27. Gọi (α) là mặt phẳng đi qua hai điểm A (0; 0; -4), B (2; 0; 0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón đỉnh là tâm của (S) và đáy là là đường tròn (C) có thể tích lớn nhất. Biết rằng (α): ax+by-z+c=0, khi đó a-b+c bằng:
A. -4.
B. 8.
C. 0.
D. 2.
Trong không gian Oxyz, cho mặt cầu (S): ( x - 1 ) 2 + ( y + 2 ) 2 + ( z - 3 ) 2 = 48 Gọi ( α ) là mặt phẳng đi qua hai điểm A(0;0-4), B(2;0;0) và cắt (S) theo giao tuyến là đường tròn (C). Khối nón (N) có đỉnh là tâm của (S), đường tròn đáy là (C) cỏ thể tích lớn nhất bằng
Cho hình chóp sabc đáy ABC là tam giác đều cạnh a, tâm giác sab đều và nằm trong mặt phẳng vuông góc với đáy . tính thể tích khối cầu có mặt cầu ngoại tiếp hình chóp sabc
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a 2 . Tam giác SAC vuông cân tại S và nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối cầu ngoại tiếp hình chóp S.ABCD.
A. 2 π a 3 3
B. 4 π a 3 3
C. 2 π a 3 3
D. 4 π a 3
Cho hình chóp S.ABCD có đáy là hình
vuông cạnh a 2 . Tam giác SAC vuông
cân tại S và nằm trong mặt phẳng vuông
góc với đáy. Tính thể tích khối cầu ngoại
tiếp hình chóp S.ABCD.
Trong không gian Oxyz cho mặt cầu ( S ) : x - 1 2 + y + 2 2 + z - 3 2 = 27 . Gọi α là mặt phẳng đi qua hai điểm A(0;0;-4) và B(2;0;0) cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón có đỉnh là tâm của (S), đáy là (C) có thể tích lớn nhất. Biết mặt phẳng α có phương trình dạng ax+by-z+c=0, khi đó a-b+c bằng:
A. -4.
B. 8.
C. 0.
D. 2.
Cho hình chóp tam giác đều S.ABC có A B = a , S A = 2 a . Một khối trụ có đáy là hình tròn nội tiếp tam giác ABC, đáy còn lại có tâm là đỉnh S. Tính thể tích V của khối trụ đã cho
Cho hình chóp S.ABCD có đáy là hình vuông, mặt bên (SAB) là một tam giác đều nằm trong mặt phẳng vuông góc với mặt đáy (ABCD) và có diện tích bằng 27 3 4 (đvdt). Một mặt phẳng đi qua trọng tâm tam giác SAB và song song với mặt đáy (ABCD) chia khối chóp S.ABCD thành hai phần, tính thể tích V của phần chứa điểm S?
A. V = 24
B. V = 8
C. V = 12
D. V = 36
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;0;-1) và mặt phẳng (P): x+ y -z -3 =0. Mặt cầu (S) có tâm I nằm trên mặt phẳng (P), đi qua điểm A và gốc tọa độ O sao cho chu vi tam giác OIA bằng 6 + 2 . Phương trình mặt cầu (S) là
A. x + 2 2 + y - 2 2 + z + 1 2 = 9 và x + 1 2 + y - 2 2 + z + 2 2 = 9
B. x - 3 2 + y - 3 2 + z - 3 2 = 9 và x - 1 2 + y - 1 2 + z + 1 2 = 9
C. x + 2 2 + y - 2 2 + z - 1 2 = 9 và x 2 + y 2 + z + 3 2 = 9
D. x + 1 2 + y - 2 2 + z + 2 2 = 9 và x - 2 2 + y - 2 2 + z - 1 2 = 9