Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
My Dream

Cho M=(a/b+c)+(b/a+c)+(c/a+b), a,b,c là các số nguyên dương.
a) Chứng minh: M<1
b) M có phải số nguyên không?
MÌNH CẦN CÂU A GẤP, LÀM ĐC CÂU B THÌ CÀNG TỐT, HỨA SẼ TICK AI ĐÚNG!! GIÚP VỚI :((

╰Nguyễn Trí Nghĩa (team...
13 tháng 7 2020 lúc 9:33

\(M=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

+)Ta thấy:\(\frac{a}{b+c}>\frac{a}{a+b+c}\)

                  \(\frac{b}{a+c}>\frac{b}{a+b+c}\)

                   \(\frac{c}{a+b}>\frac{c}{a+b+c}\)

\(\Rightarrow M>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)

Vậy M>1 (1)                 (Đề sai )

b)\(M=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

+)Ta thấy:\(\frac{a}{b+c}< \frac{a+a}{a+b+c}=\frac{2a}{a+b+c}\) 

                  \(\frac{b}{a+c}< \frac{b+b}{a+b+c}=\frac{2b}{a+b+c}\)

                 \(\frac{c}{a+b}< \frac{c+c}{a+b+c}=\frac{2c}{a+b+c}\)

\(\Rightarrow M< \frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=\frac{2a+2b+2c}{a+b+c}=\frac{2.\left(a+b+c\right)}{a+b+c}=2\)

=>M<2 (2)

+)Từ (1) và (2)

=>M không phải là ssoos nguyên

Chúc bạn học tốt

Khách vãng lai đã xóa

Các câu hỏi tương tự
My Dream
Xem chi tiết
Nguyễn Thanh Hà
Xem chi tiết
Lê Minh Đức
Xem chi tiết
GIANG THU PHUONG
Xem chi tiết
Access_123
Xem chi tiết
nguyễn nam dũng
Xem chi tiết
My Dream
Xem chi tiết
Phương Vi
Xem chi tiết
Tâm Lê Huỳnh Minh
Xem chi tiết