Đáp án A
Áp dụng biểu thức tọađộ x ' = x + a y ' = y + b
Đáp án A
Áp dụng biểu thức tọađộ x ' = x + a y ' = y + b
Cho M(5;0), M’( 0;8) làảnh củađiểm M qua phép tịnh tiến theo vectơ nào:
A. u → ( − 5 ; 8 )
B. v → 8 ; − 5
C. m → 5 ; 8
D. n → 8 ; 5
Trong mặt phẳng tọa độ Oxy cho vectơ v → = - 1 ; 2 , A 3 ; 5 , B - 1 ; 1 và đường thẳng d có phương trình x – 2 y + 3 = 0 .
a. Tìm tọa độ của các điểm A' , B' theo thứ tự là ảnh của A, B qua phép tịnh tiến theo vecto v →
b. Tìm tọa độ của điểm C sao cho A là ảnh của C qua phép tịnh tiến theo vectơ v →
c. Tìm phương trình của đường thẳng d' là ảnh của d qua phép tịnh tiến theo v .
Trong mặt phẳng Oxy cho điểm M(1; - 2) Tọa độ ảnh của điểm M qua phép tịnh tiến theo vectơ v → 3 ; - 2 là:
A. M'(-2;4)
B. M'(4;-4)
C. M'(4;4)
D. M'(-2,0)
Trong mặt phẳng tọa độ Oxy ảnh của đường tròn (C) x + 1 2 + ( y - 3 ) 2 = 4 qua phép tịnh tiến theo vectơ v → =(3;2) là đường tròn có phương trình:
A. x + 2 2 + ( y + 5 ) 2 = 4
B. x - 2 2 + ( y - 5 ) 2 = 4
C. x - 1 2 + ( y + 3 ) 2 = 4
D. x + 4 2 + ( y - 1 ) 2 = 4
Trong mặt phẳng Oxy, cho v → = ( 2 ; 0 ) và điểm M(1; 1).
a) Tìm tọa độ của điểm M’ là ảnh của điểm M qua phép dời hình có được bằng cách thực hiện liên tiếp phép đối xứng qua trục Oy và phép tịnh tiến theo vectơ v →
b) Tìm tọa độ của điểm M" là ảnh của điểm M qua phép dời hình có được bằng cách thực hiện liên tiếp phép tịnh tiến theo vectơ v → và phép đối xứng qua trục Oy.
Trong mặt phẳng Oxy cho điểm M(-3;2). ảnh của điểm M qua phép tịnh tiến theo v → ( 2 ; 0 ) là:
A. (1;-1)
B. (-1;1)
C. (-1;2)
D. (1;-2)
Trong mặt phẳng với hệ tọa độ Oxy, cho vectơ v → = ( 2 ; - 1 ) và điểm M(-3;1) Tìm tọa độ ảnh M' của điểm M qua phép tịnh tiến theo vectơ v → .
A. (5;3)
B. (1;-1)
C. (-1;1)
D. (1;1)
Cho vectơ v → đường thẳng d vuông góc với giá của v → . Gọi d’ là ảnh của d qua phép tịnh tiến theo vectơ v → 2 . Chứng minh rằng phép tịnh tiến theo vectơ v → là kết quả của việc thực hiện liên tiếp phép đối xứng qua các đường thẳng d và d’.
Hướng dẫn. Dùng định nghĩa phép tịnh tiến và phép đối xứng trục.
Trong mặt phẳng tọa độ Oxy cho vectơ u → = ( 3 ; - 1 ) . Phép tịnh tiến theo vectơ u → biến điểm M(1;-4) thành