cho tam giác abc có ab<ac.tia phân giác của góc a cắt đường trung trực của bc tại i .qua i kẻ đường vuông gócvoi 2 cạnh của góc a ,cắt tia ab, ac theo thứ tư tại h và k ,chứng minh rằng
a, AH=AK
b, bh=CK
C,AK=AC+AB/2, ck=AC-AB/2
cho tam giác abc có ab<ac.tia phân giác của góc a cắt đường trung trực của bc tại i .qua i kẻ đường vuông gócvoi 2 cạnh của góc a ,cắt tia ab, ac theo thứ tư tại h và k ,chứng minh rằng
a, AH=AK
b, bh=CK
C,AK=AC+AB/2, ck=AC-AB/2
Cho m và n là hai số tự nhiên và p là số nguyên tố thỏa mãn p/m-n= m+n/p
CMR: p²=n+2
Júp mìh ik các pạn
Cho m, n lad số tự nhiên và p là số nguyên tố thỏa mãn: p/m+1=m+n/p
Chứng minh rằng: p^2=n+2
Cho 2 stn m và n
a) Cm trong 4 kết luận sau có 2 kết luận mau thuẫn với nhau:
1. m + 1 chia hết cho n.
2. m= 2n+5.
3. m+n là B(3).
4. m+7n là số nguyên tố.
b) Tìm tất cả các số tự nhiên m và n thỏa mãn 3 điều kiên trên.
cho m,n là 2 số tự nhiên; p là số nguyên tố thỏa mãn: \(\frac{p}{m-1}=\frac{m+n}{p}\)chứng minh rằng: p*p= n+2
CMR : nếu các số tự nhiên m và n thỏa mãn hệ thức 3m - 2n = 1 thì m và n nguyên tố cùng nhau
1a) Tìm các số nguyên tố p để 2p+1 là lập phương của 1 số tự nhiên
b)Tìm các số nguyên tố p đẻ 13p+1 là lập phương của 1 số tự nhiên
2) Cho p là số nguyên tố lớn hơn 2. Chứng minh rằng: có vô số số tự nhiên n thỏa mãn n.2^n-1 chia hết cho p
3) Tìm n thuộc N* để: a) n^4+4 là số nguyên tố
b)n^2003+n^2002+1 là số nguyên tố
cho m,n và p là số nguyên tố thỏa mãn p/m-1=m+n/p cmr p^2=n+2
Cho m,n thuộc N và p là số nguyên tố thỏa mãn: p/( m-1)=(m+n)/p
Câu 1
Tìm 3 số nguyên tố liên tiếp p,q,r sao cho p2+q2+r2 cũng là số nguyên tố
Câu 2
Tìm bộ 3 số nguyên tố a,b,c sao cho abc<ab+bc+ca
Câu 3
Cho p là số nguyên tố lớn hơn 2. Chứng minh rằng có vô số số tự nhiên n thỏa mãn n.2n-1 chia hết cho p
Câu 4
Cho p là số nguyên tố, chứng minh rằng số 2p-1 chỉ có ước nguyên tố có dạng 2pk+1
Câu 5
Giả sử p là số nguyên tố lẻ và m=\(\frac{9^p-1}{8}\) . Chứng minh rằng m là hợp số lẻ không chia hết cho 3 và 3m-1= 1 ( mod m)