Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phan Minh Triết
Cho M = 2n4 _  7n3 2n2 + 13n + 6 ( n thuoc Z ) Chứng minh M chia hết cho 6
Nguyễn Thị BÍch Hậu
6 tháng 7 2015 lúc 9:58

\(M=2n^4+2n^3-9n^3-9n^2+7n^2+7n+6n+6=\left(n+1\right)\left(2n^3-9n^2+7n+6\right)=\left(n+1\right)\left(2n^3-4n^2-5n^2+10n-3n+6\right)\)

\(=\left(n+1\right)\left(n-2\right)\left(2n^2-5n-3\right)=\left(n+1\right)\left(n-2\right)\left(2n^2+n-6n-3\right)=\left(n+1\right)\left(n-2\right)\left(2n+1\right)\left(n-3\right)\)

\(=\left(n-1+2\right)\left(n-2\right)\left(n-3\right)\left(2n+1\right)=\left(n-1\right)\left(n-2\right)\left(n-3\right)\left(2n+1\right)+2\left(n-2\right)\left(n-3\right)\left(2n-2+3\right)\)

\(=\left(n-1\right)\left(n-2\right)\left(n-3\right)\left(2n+1\right)-2\left(2n-2\right)\left(n-2\right)\left(n-3\right)+3.2\left(n-2\right)\left(n-3\right)\)

\(=\left(n-1\right)\left(n-2\right)\left(n-3\right)\left(2n+1\right)-2.2\left(n-1\right)\left(n-2\right)\left(n-3\right)+6\left(n-2\right)\left(n-3\right)\)

ta có: (n-1)(n-2)(n-3) là tích của 3 số tự nhiên liên tiếp (với n>=3) => có 1 số chia hết cho 1, cho 2, cho 3 

và vì (1;2;3)=1 => tích của chúng chia hết cho 1.2.3=6 => chia hết cho 6

tiếp theo với 4(n-1)(n-2)(n-3) cũng vậy

còn 6(n-2)(n-3) thì hiển nhiên chia hết cho 6 nhé

=> chia hết cho 6

 


Các câu hỏi tương tự
Lê Đức Tâm
Xem chi tiết
tuan nguyen
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Pham Trong Bach
Xem chi tiết
TRẦN THỊ DIỆU QUỲNH
Xem chi tiết
tran minh phuc
Xem chi tiết
Phạm Thị Thảo Vy
Xem chi tiết
Minh Đăng
Xem chi tiết
Fire Sky
Xem chi tiết