Trong không gian với hệ tọa độ Oxyz, cho hai điểm
A (1;-2;0), B (-3;2;-4) và mặt phẳng (P): x + 2y + z - 3 = 0.
Gọi M (a;b;c) là điểm thuộc mặt phẳng (P) sao cho tam giác
MAB cân tại M và có diện tích nhỏ nhất. Tính giá trị T = a 2 + b + c .
A. T = 1
B. T = 2
C. T = 0
D. T = 3
Trong không gian Oxyz, cho mặt phẳng α x – z – 3 = 0 và điểm M (1; 1; 1). Gọi A là điểm thuộc tia Oz. Gọi B là hình chiếu của A lên (α). Biết rằng tam giác MAB cân tại M. Diện tích của tam giác MAB bằng:
A. 6 3
B . 3 3 12
C . 3 123 2
D. 3 3
Trong không gian Oxyz, cho mặt phẳng ( α ) : x - z -3 = 0 và điểm M(1;1;1). Gọi A là điểm thuộc tia Oz, B là hình chiếu của A lên ( α ) . Biết rằng tam giác MAB cân tại M. Diện tích của tam giác MAB bằng
A. 3 123 2
B. 6 3
C. 3 3 2
D. 3 3
#THPT Chuyên ĐH Vinh – lần 1 - năm 2017 – 2018~Trong không gian Oxyz cho mặt phẳng (α): x – z – 3 = 0 và điểm M (1;1;1). Gọi A là điểm thuộc tia Oz. Gọi B là hình chiếu của A lên (α). Biết rằng tam giác MAB cân tại M. Diện tích của tam giác MAB bằng:
A 3 2 2
B 3 3 2
C 3 2
D 3
Trong không gian Oxyz, cho hai điểm A (0;-1;2); B (1;1;2) và đường thẳng d : x + 1 1 = y 1 = z - 1 1 . Biết điểm M (a;b;c) thuộc đường thẳng d sao cho tam giác MAB có diện tích nhỏ nhất. Khi đó, giá trị T = a + 2b + 3c bằng:
A. 5
B. 3
C. 4
D. 10
Cho d : x + 2 1 = y - 1 3 = z + 5 - 2 và A(-2;1;1), B(-3;-1;2). Gọi M là điểm thuộc đường thẳng d sao cho tam giác AMB có diện tích 3 5 . Tìm tọa độ điểm M.
![]()
![]()
![]()
![]()
Trong không gian oxyz, cho điểm A(1;5;0), B(3;3;6) và đường thẳng d : x + 1 2 = y - 1 - 1 = z 2 Điểm M(a;b;c) thuộc đường thẳng d sao cho chu vi tam giác MAB nhỏ nhất. Khi đó giá trị của biểu thức a + 2b + 3c bằng
A. 5
B. 7
C. 9
D. 3
Cho d : x = t , y = - 1 + 2 t , z = 1 + m t và ∆ : x - 2 2 = y - 3 - 1 = z - 1 - 1 . Tìm m để (d), ∆ cắt nhau.
![]()
![]()
![]()
![]()
Trong không gian OxyzOxyz cho hai điểm A(2;4;3)A(2;4;3) và B(2;7;1)B(2;7;1). Trong các phương trình dưới đây, phương trình nào là phương trình tham số của đường thẳng ABAB? (với t\in \Rt∈R)
A,\left\{{}\begin{matrix}x=2+2t\\y=7+4t\\z=1+3t\end{matrix}\right.⎩⎪⎨⎪⎧x=2+2ty=7+4tz=1+3t
B,\left\{{}\begin{matrix}x=4\\y=3+3t\\z=2-2t\end{matrix}\right.⎩⎪⎨⎪⎧x=4y=3+3tz=2−2t
c,\left\{{}\begin{matrix}x=2\\y=4-3t\\z=3+2t\end{matrix}\right.⎩⎪⎨⎪⎧x=2y=4−3tz=3+2t
d,\left\{{}\begin{matrix}x=2+2t\\y=4+7t\\z=3+t\end{matrix}\right.⎩⎪⎨⎪⎧x=2+2ty=4+7tz=3+t