Chúng ta nhân biểu thức liên hợp
\(\left(x+\sqrt{x^2+2013}\right)\left(-x+\sqrt{x^2+2013}\right)=2013\left(1\right)\)
\(\left(y+\sqrt{y^2+2013}\right)\left(-y+\sqrt{y^2+2013}\right)=2013\left(2\right)\)
Nhân vế với vế của (1) và (2)
\(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)\left(-x+\sqrt{x^2+2013}\right)\left(-y+\sqrt{y^2+2013}\right)=2013^2\)<=>\(2013.\left(-x+\sqrt{x^2+2013}\right)\left(-y+\sqrt{y^2+2013}\right)=2013^2\)
<=>\(\left(-x+\sqrt{x^2+2013}\right)\left(-y+\sqrt{y^2+2013}\right)=2013\)
Nhân ra
\(xy-y\sqrt{\left(x^2+2013\right)}-x\sqrt{y^2+2013}+\sqrt{\left(x^2+2013\right)\left(y^2+2013\right)}=2013\left(3\right)\)Từ biểu thức ban đầu cho ta có
\(xy+y\sqrt{x^2+2013}+x\sqrt{y^2+2013}+\sqrt{\left(x^2+2013\right)\left(y^2+2013\right)}=2013\left(4\right)\)Cộng 3 và 4 lại với nhau và bình phương 2 vế lên là ra bạn à
Ta có
\(\left(\sqrt{x^2+2013}+x\right)\left(\sqrt{x^2+2013}-x\right)=x^2+2013-x^2=2013\)
\(\left(\sqrt{y^2+2013}+y\right)\left(\sqrt{y^2+2013}-y\right)=y^2+2013-y^2=2013\)
Mà Theo đề Ra
=>\(y+\sqrt{y^2+2013}=\sqrt{x^2+2013}-x\)(*)
và \(x+\sqrt{x^2+2013}=\sqrt{y^2+2013}-y\)(**)
Cộng (*) với (**)
=>x+y = -x -y
hay x + y =0
=> A = x+y =0
cả 2 bạn đề đúng nhưng mình thích câu của bạn Dương hơn vì ngắn gọn dễ hiểu