x + y = 0000000000000000000000000000000000000000000000000000000000000000
x + y = 0000000000000000000000000000000000000000000000000000000000000000
Cho x,y>0 tm xy+x+y=1. Tính
\(S=x\sqrt{\frac{2\left(1+y^2\right)}{1+x^2}}+y\sqrt{\frac{2\left(1+x^2\right)}{1+y^2}}+\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{2}}\)
cho x,y,z>0 và xy+yz+xz=1
tính Q=\(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}+y\sqrt{\frac{\left(1+x^2\right)\left(1+z^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}}\)
Cho x,y>0, \(xy+x+y=1\)
Tính \(S=\sqrt{\frac{2\left(1+y^2\right)}{1+x^2}}+\sqrt{\frac{2\left(1+x^2\right)}{1+y^2}}+\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{2}}\)
Rút gọn :\(\frac{x}{\left(\sqrt{x}+\sqrt{y}\right).\left(1-\sqrt{y}\right)}-\frac{y}{\left(\sqrt{x}+\sqrt{y}\right).\left(\sqrt{x}+1\right)}-\frac{xy}{\left(\sqrt{x}+1\right).\left(1-\sqrt{y}\right)}\)
Tính x + y biết:
\(\left(x+\sqrt{y^2+1}\right)\left(y+\sqrt{x^2+1}\right)\)
Giúp với!!
Cho x,y,z > 0. Tìm :
a) \(maxA=\sqrt{x^2+\frac{1}{y^2}}+\sqrt{y^2+\frac{1}{z^2}}+\sqrt{z^2+\frac{1}{x^2}}\left(ĐK:x+y+z=1\right)\)
b) \(maxB=\sqrt{x^2+\frac{1}{y^2}}+\sqrt{y^2+\frac{1}{x^2}}\left(ĐK:x+y\le1\right)\)
c) \(max,minC=2x+\sqrt{5-x^2}\)
Cho các số dương x, y, z thỏa mãn:\(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)
Tìm giá trị lớn nhất của
\(Q=\frac{x}{\sqrt{yz\left(1+x^2\right)}}+\frac{y}{\sqrt{xz\left(1+y^2\right)}}+\frac{z}{\sqrt{xy\left(1+z^2\right)}}\)
Cho các số dương x,y,z thỏa mãn: \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)
Tìm giá trị lớn nhất biểu thức \(Q=\frac{x}{\sqrt{yz\left(1+x^2\right)}}+\frac{y}{\sqrt{zx\left(1+y^2\right)}}+\frac{z}{\sqrt{xy\left(1+z^2\right)}}\)
Cho x,y,z dương thỏa mãn \(\sqrt{x}+\sqrt{y}+\sqrt{z}=1\)
Tìm GTLN của biểu thức P=\(\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}-\left(x-y\right)^2-\left(y-z\right)^2-\left(z-x\right)^2\)
GIÚP VỚI Ạ!!!!!!! Hứa TICK