Đề bài sai .
Nếu x = -1
y = -1
Đề bài sai .
Nếu x = -1
y = -1
Đố
Cho \(x+y+z=1\)
\(S=\dfrac{\left(xy+z\right)\left(yz+x\right)\left(zx+y\right)}{\left(1-x\right)^2\left(1-y\right)^2\left(1-z\right)^2}\)
Cho biểu thức \(A=\frac{\left|xy\right|}{xy}-\frac{\left|xy\left(x-y\right)\right|}{xy\left(x-y\right)}\left(\frac{\left|x\right|}{x}-\frac{\left|y\right|}{y}\right)\). CMR giá trị của biểu thức A không phụ thuộc vào giá trị của x, y
a) Cho x, y, z và x - y - z = 0
Tính giá trị của biểu thức:
\(A=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
b) Cho x, y, z thỏa mãn: xyz = 1
CMR:
\(\frac{1}{xy+x+1}+\frac{1}{yz+y+1}+\frac{1}{xyz+yz+1}=1\)
Chứng minh rằng:\(x^{\left(2^{y+1}\right)}+x^{\left(2^y\right)}+1=\left(x^2+x+1\right)\left(x^2-x+1\right)\left(x^4-x^2+1\right)...\left(x^{\left(2^{y-1}\right)}+x^{\left(2^{y-2}\right)}+1\right)\left(x^{\left(2^y\right)}+x^{\left(2^{y-1}\right)}+1\right)\)với mọi \(x\in N;x>0\)và \(y\in N;y>1\)
\(P=\left(xy\right)+\left(x^2y^2\right)-\left(x^4y^4\right)+\left(x^6y^6\right)-\left(x^8y^8\right)\)
Tính giá trị của P tại x=-1 và y=-1
tính giá trị của biểu thức:
\(A=\dfrac{\left(a+b\right)\left(-x-y\right)-\left(a-y\right)\left(b-x\right)}{abxy\left(xy+ay+ab+by\right)}\) với \(a=\dfrac{1}{3};b=-2;x=\dfrac{3}{2};y=1\)
Cho x-y=7.Tính:
a)x(x+2)+y(y-2)-2xy+37
b)\(x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)-95\)
1. Cho các số x, y, z thỏa mãn : (x + y)(y + z)(z + x) = 4. CMR: \(\left(x^2-y^2\right)^3\)+ \(\left(y^2-z^2\right)^3\)+ \(\left(z^2-x^2\right)^3\)= 12 (x - y)(y - z)(z - x)
2. Rút gọn: \(\dfrac{\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3}{\left(x^2-y^2\right)^3+\left(y^2-z^2\right)^3+\left(z^2-x^2\right)^3}\) biết (x + y)(y + z)(z + x) = 1
3. Cho a, b, c ≠ 0 thỏa mãn: a + b + c = \(a^2+b^2+c^2\) = 2. CMR: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{abc}\)
MONG MN GIẢI GIÚP EM Ạ!!! EM ĐANG CẦN GẤP ! CẢM ƠN MN NHIỀU
Cho\(\left(x-y\right)\div\left(x+y\right)\div xy=1\div7\div24\left(x,y\ne0\right)\)
Tính x,y