Cho lăng trụ đứng ABC.A'B'C' có đáy là tam giác ABC vuông cân tại A, cạnh BC = a√6. Góc giữa mặt phẳng (AB'C) và mặt phẳng (BCC'B') bằng 600. Tính thể tích V của khối lăng trụ ABC.A'B'C'?
A . V = 2 a 3 3 3
B . V = a 3 3 2
C . V = 3 a 3 3 4
D . V = 3 a 3 3 2
Cho hình lăng trụ đứng ABC.A'B'C' có đáy là tam giác ABC vuông cân tại A, cạnh BC=a 6 . Góc giữa mặt phẳng (AB'C) và mặt phẳng (BCC'B') là 60 0 . Tính thể tích khối đa diện AB'CA'C'
Cho khối lăng trụ đứng ABCD.A'B'C'D' có đáy là tam giác cân ABC với AB=AC=a, B A C ⏜ = 120 0 mặt phẳng (AB'C') tạo với đáy một góc 30 0 .Tính thể tích V của khối lăng trụ đã cho.
Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại A, cạnh AC=b, góc ACB= 60 ° . Góc giữa đường thẳng BC' và mặt phẳng (AA'C'C) bằng 30 ° . Tính theo b diện tích xung quanh của hình lăng trụ ABC.A'B'C'.
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông cân tại A, mặt bên BCC'B' là hình vuông cạnh 2a. Tính thể tích V của khối lăng trụ ABC.A'B'C'.
Cho hình lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại B, BC = a, mặt phẳng (A'BC) tạo với đáy một góc 30 ° và tam giác có diện tích bằng a 2 3 . Tính thể tích khối lăng trụ ABC.A'B'C'.
A. 3 a 3 3 2
B. 3 a 3 3 8
C. a 3 3 8
D. 3 a 3 3 4
Cho lăng trụ tam giác ABC.A'B'C' có đáy ABC là tam giác vuông tại A với AB = a, AC = a 3 . Hình chiếu vuông góc của A' lên mặt phẳng (ABC) trùng với trọng tâm G của tam giác ABC và góc giữa AA’ tạo với mặt phẳng (ABC) bằng 60 ∘ . Gọi V là thể tích khối lăng trụ ABC.A'B'C'. Tính V 3 + V a 3 - 1 .
A. 1.
B. a.
C. a 2 .
D. a 3 .
Cho hình lăng trụ đứng ABC.A'B'C có đáy ABC là tam giác vuông tại A, AB= a 3 , BC=2a , đường thẳng AC' tạo với mặt phẳng (BCC'B') một góc 30 ° . Diện tích của mặt cầu ngoại tiếp lăng trụ đã cho bằng:
Cho hình lăng trụ đứng ABCD.A'B'C'D' có đáy ABC là tam giác vuông,AB=BC=a. Biết rằng góc giữa hai mặt phẳng (ACC') và (ABC') bằng 60 0 (tham khảo hình vẽ bên). Thể tích của khối chóp B'ACC'A' bằng