Cho lăng trụ đứng ABCD.A'B'C'D' có đáy là hình bình hành. Các đường chéo DB' và AC' lần lượt tạo với đáy các góc 45 0 v à 30 0 . Biết chiều cao của lăng trụ là a và B A D ^ = 60 0 , hãy tính thể tích V của khối lăng trụ này.
A . V = a 3 2 3
B . V = a 3 3
C . V = a 3 2
D . V = a 3 3 2
Cho lăng trụ ABCD.A'B'C'D' có đáy ABCD là hình thoi, AC=2a, BAD= 120 o Hình chiếu vuông góc của điểm B trên mặt phẳng (A'B'C'D') là trung điểm cạnh A' B' góc giữa mặt phẳng (AC'D') và mặt đáy lăng trụ bằng 60 o . Tính thể tích V của khối lăng trụ ABCD.A'B'C'D'?
Cho hình lăng trụ ABCD.A'B'C'D' có đáy ABCD là hình thoi cạnh a, tâm O và ABC= 120 o . Các cạnh AA', A'B, A' D cùng tạo với đáy một góc 60 o .Tính theo a thể tích V của khối lăng trụ đã cho.
A. a 3 3
B. a 3 3 6
C. a 3 3 2
D. 3 a 2 2
Cho hình lăng trụ có tất cả các cạnh đều bằng a, đáy là hình lục giác đều, góc tạo nên bởi cạnh bên và đáy bằng 60 0 . Tính thể tích V khối lăng trụ.
A. V = 3 4 a 3
B. V = 3 4 a 3
C. V = 9 4 a 3
D. V = 3 3 2 a 3
Cho lăng trụ đứng tam giác MNP. M’N’P’ có đáy MNP là tam giác đều cạnh a, đường chéo MP’ tạo với mặt phẳng đáy một góc bằng 60 0 .Tính theo a thể tích của khối lăng trụ MNP. M’N’P’
A. 3 a 3 2
B. 2 a 3 3
C. 3 4 a 3
D. 2 a 3 4
Cho khối lăng trụ đứng ABCD.A'B'C'D' có đáy là hình vuông có thể tích là V. Để diện tích toàn phần của lăng trụ nhỏ nhất thì cạnh đáy của lăng trụ bằng
Cho hình lăng trụ tứ giác ABCD.A'B'C'D' có đáy ABCD là hình vuông cạnh a và thể tích bằng 3 a 3 . Tính chiều cao h của hình lăng trụ đã cho.
A . h = a 3
B . h = a
C . h = 9 a
D . h = 3 a
Nếu khối lăng trụ đứng có đáy là hình vuông cạnh 2a và đường chéo mặt bên bằng 4a thì khối lăng trụ đó có thể tích bằng:
A. 4 a 3
B. 6 3 a 3
C. 8 3 a 3
D. 12 a 3
Cho hình lăng trụ có đáy là tam giác đều cạnh a, cạnh bên bằng 2a và tạo với đáy góc 300. Thể tích của khối lăng trụ đó là