Cho khối trụ có chiều cao h=16 và hai đáy là hình tròn tâm O, O' với bán kính R=12. Gọi I là trung điểm của OO' và AB là một dây cung của đường tròn (O) sao cho A B = 12 3 . Tính diện tích thiết diện của khối trụ với mặt phẳng (IAB).
Cho khối trụ có hai đáy là hình tròn (O;R) và (O';R), OO'=4R. Trên đường tròn tâm O lấy (O) lấy hai điểm A, B sao cho AB=R 3 . Mặt phẳng (P) đi qua A, B cắt OO’ và tạo với đáy một góc bằng 60 0 . (P) cắt khối trụ theo thiết diện là một phần của elip. Diện tích thiết diện đó bằng:
Một hình trụ có các đáy là hai hình tròn tâm O và O’ bán kính r và có đường cao h = r 2 . Gọi A là một điểm trên đường tròn tâm O và B là một điểm trên đường tròn tâm O’ sao cho OA vuông góc với O’B. Gọi ( α ) là mặt phẳng qua AB và song song với OO’. Tính khoảng cách giữa trục OO’ và mặt phẳng (α).
Một khối trụ có bán kính đáy bằng r và chiều cao bằng r 3 . Gọi A và B là hai điểm trên hai đường tròn đáy sao cho góc được tạo thành giữa đường thẳng AB và trục của khối trụ bằng 30 ° . Tính diện tích của thiết diện qua AB và song song với trục của khối trụ.
Cho hình trụ có đáy là hai đường tròn tâm O và O’, bán kính đáy bằng chiều cao và bằng 2a. Trên đường tròn đáy có tâm O lấy điểm A, D sao cho A D = 2 3 a ; gọi C là hình chiếu vuông góc của D lên mặt phẳng chứa đường tròn (O’); trên đường tròn tâm O’ lấy điểm B (AB chéo với CD) . Đặt α là góc giữa AB và đáy. Tính tan α khi thể tích khối tứ diện CDAB đạt giá trị lớn nhất.
A. tan α = 3
B. tan α = 1 2
C. tan α = 1
D. tan α = 3 3
Cho khối trụ có đáy là các đường tròn tâm(O), (O’) có bán kính là R và chiều cao h = R 2 . Gọi A, B lần lượt là các điểm thuộc (O) và (O’) sao cho OA vuông góc với O’B. Tỉ số thể tích của khối tứ diện OO’AB với thể tích khối trụ là
Một hình trụ có các đáy là hai hình tròn tâm O và O’ bán kính r và có đường cao h = r 2 . Gọi A là một điểm trên đường tròn tâm O và B là một điểm trên đường tròn tâm O’ sao cho OA vuông góc với O’B. Chứng minh rằng các mặt bên của tứ diện OABO’ là những tam giác vuông. Tính thể tích của tứ diện này.
Cho hình trụ có bán kính đáy r, gọi O và O' là tâm của hai đường tròn đáy với OO'=2r. Một mặt cầu tiếp xúc với hai đáy của hình trụ tại O và O'. Gọi V C và V T lần lượt là thể tích của khối cầu và khối trụ. Khi đó V C V T bằng
Cho hình trụ có hai đáy là hai hình tròn (O;R) và (O’;R). AB là một dây cung của đường tròn (O;R) sao cho tam giác O’AB là tam giác đều và mặt phẳng (O’AB) tạo với mặt phẳng chứa đường tròn (O;R) một góc 60 ° . Tính theo R thể tích V của khối trụ đã cho