Cho khối nón đỉnh O, chiều cao là h. Một khối nón khác có đỉnh là tâm I của đáy và đáy là một thiết diện song song với đáy của hình nón đã cho. Để thể tích của khối nón đỉnh I lớn nhất thì chiều cao của khối nón này bằng bao nhiêu?
Cho hình nón đỉnh S, đáy là hình tròn tâm O và có chiều cao bằng 40. Cắt hình nón bằng một mặt phẳng song song với mặt phẳng đáy, thiết diện thu được là đường tròn tâm O'. Chiều cao h của khối nón đỉnh S đáy là hình tròn tâm O' bằng bao nhiêu, biết rằng thể tích của nó bằng 1 8 thể tích khối nón đỉnh S, đáy là hình tròn tâm O.
Cho hình nón đỉnh S, chiều cao S0=h, bán kính đáy bằng R. Gọi M là điểm nằm trên đoạn SO, đặt OM=x ( 0 < x < h Cắt hình nón bằng mặt phẳng (P) đi qua M và vuông góc với SO, thiết diện thu được là đường tròn (C). Tìm x để thể tích của khối nón đỉnh O đáy là hình tròn giới hạn bởi (C) đạt giá trị lớn nhất.
Cho mặt cầu (S) tâm O bán kính r. Hình nón có đường tròn đáy (C) và đỉnh I thuộc (S) được gọi là hình nón nội tiếp mặt cầu (S). Gọi h là chiều cao của hình nón đó. Thể tích của khối nón theo r và h.
Cho hình nón (N) có đường cao SO=h và bán kính đáy bằng R, gọi M là điểm trên đoạn SO, đặt OM=x, 0<x<h. (C) là thiết diện của mặt phẳng (P) vuông góc với trục SO tại M, với hình nón (N). Tìm x để thể tích khối nón đỉnh O đáy là (C) lớn nhất.
Cho hình nón (N) có đường cao SO = h và bán kính đáy bằng R , gọi M là điểm trên đoạn SO , đặt OM = x, 0<x<h. (C) là thiết diện của mặt phẳng (P) vuông góc với trục SO tại M , với hình nón (N). Tìm x để thể tích khối nón đỉnh O đáy là (C) lớn nhất.
Cho hình nón (N) có đường cao SO = h và bán kính đáy bằng R , gọi M là điểm trên đoạn SO , đặt OM = x, 0<x<h. (C) là thiết diện của mặt phẳng (P) vuông góc với trục SO tại M , với hình nón (N). Tìm x để thể tích khối nón đỉnh O đáy là (C) lớn nhất.
Cho hình nón (N) có đường cao SO = h và bán kính đáy bằng R, gọi M là điểm trên đoạn SO, đặt OM = x (0 < x < h). (C) là thiết diện của mặt phẳng (P) vuông góc với trục SO tại M, với hình nón (N). Giá trị x theo h để thể tích khối nón đỉnh O đáy là (C) lớn nhất là:
A. x = h 2
B. x = h 2 2
C. x = h 3 2
D. x = h 3
Cho hình nón đỉnh I và đường tròn đáy tâm O. Bán kính đáy bằng chiều cao của hình nón. Giả sử khoảng cách từ trung điểm của IO tới một đường sinh bất kì là 2 . Hai điểm A, B nằm trên đường tròn tâm O sao cho AB = 1/2. Tính thể tích khối tứ diện IABO
A. 63 12
B. 7 6
C. 255 12
D. 5 4