Trong mặt phẳng tọa độ Oxy cho điểm A(-1;2) và đường thẳng d có phương trình 3 x + y + 1 = 0 . Tìm ảnh của A và d.
a. Qua phép tịnh tiến theo vectơ v=(2;1);
b. Qua phép đối xứng trục Oy;
c. Qua phép đối xứng qua gốc tọa độ;
d. Qua phép quay tâm O góc 90 o .
Trong mặt phẳng tọa độ Oxy, cho các điểm A (1;1), B(0;3), C(2;4) .Xác định ảnh của tam giác ABC qua các phép biến hình sau.
(a)Phép tịnh tiến theo vector v = (2;1).
(b)Phép đối xứng qua trục Ox
(c)Phép đối xứng qua tâm I(2;1).
(d)Phép quay tâm O góc 90 o .
(e)Phép đồng dạng có được bằng cách thực hiện liên tiếp phép đối xứng qua trụ Oy và phép vị tự tâm O tỉ số k = -2
Trong mặt phẳng với hệ trục tọa độ Oxy cho đường thẳng d có phương trình x+y-2=0, tìm phương trình đường thẳng d' là ảnh của d qua phép đối xứng tâm I(1;2).
A. x+y+4=0
B. x+y-4=0
C. x-y+4=0
D. x-y-4=0
Trong mp (oxy) , đường d : 5x-y+6=0 và đường tròn (c) : x²+y²+2x-6y+4=0 . Hãy xác định : (d') và (c') của d và (c) , qua phép đối xứng tâm I (1;2) ?
Trong mp (oxy) , đường d : 5x-y+6=0 và đường tròn (c) : x²+y²+2x-6y+4=0 . Hãy xác định : (d') và (c') của d và (c) , qua phép đối xứng tâm I (1;2) ?
Trong mặt phẳng Oxy cho đường thẳng d: 2x – y + 6 = 0. Viết phương trình đường thẳng d’ là ảnh của d qua phép đối xứng tâm I(−2;1).
Trong mặt phẳng Oxy, cho hai điểm I(1; 2), M(-2; 3), đường thẳng d có phương trình 3x – y + 9 = 0 và đường tròn (C) có phương trình: x 2 + y 2 + 2 x − 6 y + 6 = 0 .
Hãy xác định tọa độ của điểm M’, phương trình của đường thẳng d’ và đường tròn (C’) theo thứ tự là ảnh của M, d và (C) qua
a) Phép đối xứng qua gốc tọa độ;
b) Phép đối xứng qua tâm I.
Trong mặt phẳng Oxy cho đường thẳng d có phương trình 3x – y – 3 = 0. Viết phương trình đường thẳng d 1 là ảnh của d qua phép dời hình có được bằng cách thực hiện liên tiếp phép đối xứng tâm I(−1;2) và phép quay tâm O góc quay - 90 ο .
Số phát biểu sai:
a) Phép đối xứng trục là một phép dời hình
b) Đường thẳng d được gọi là trục đối xứng của hình (H) nếu phép đối xứng trục Đd biến hình (H) thành chính nó.
c) Một hình có thể có một hay nhiều trục đối xứng, có thể không có trục đối xứng.
d) Qua phép đối xứng trục, đoạn thẳng AB biến thành đoạn thẳng song song và bằng nó.
e) Qua phép đối xứng trục Đa, đường tròn có tâm nằm trên a sẽ biến thành chính nó.
f) Qua phép đối xứng trục Đa, tam giác có một đỉnh nằm trên a sẽ biến thành chính nó
g) Qua phép đối xứng trục Đa, ảnh của đường thẳng vuông góc với a là chính nó
h) Nều phép đối xứng trục biến đường thẳng a thành đường thẳng b cắt a thì giao điểm của a và b nằm trên trục đối xứng
i) Hình chữ nhật có 4 trục đối xứng
A. 3
B.5
C. 7
D.9