Cho i là đơn vị ảo. Tập hợp các điểm biểu diễn hình học số phức thỏa mãn |z-1+1| = |z+i-2| là đường thẳng có phương trình
Cho số phức z thay đổi hoàn toàn thỏa mãn: |z-i| = |z-1+2i|. Tập hợp các điểm trên mặt phẳng tọa độ biểu diễn số phức w thỏa mãn: w = (2-i)z+1 là một đường thẳng. Viết phương trình đường thẳng đó.
A. -x + 7y + 9 = 0
B. x + 7y - 9 = 0
C. x + 7y + 9 = 0
D. x - 7y + 9 = 0
Cho số phức thỏa mãn z - i = z - 1 + 2 i . Tập hợp điểm biểu diễn số phức w = (2 - i) z +1 trên mặt phẳng phức là một đường thẳng. Phương trình của đường thẳng đó là
Cho các số phức z thỏa mãn z − i = z − 1 + 2 i . Tập hợp các điểm biểu diễn số phức w = 2 − i z + 1 trên mặt phẳng tọa độ là một đường thẳng. Phương trình đường thẳng đó là
A. x − 7 y − 9 = 0
B. x + 7 y − 9 = 0
C. x + 7 y + 9 = 0
D. x - 7 y + 9 = 0
Cho các số phức z thỏa mãn z + 1 - i = z - 1 + 2 i . Tập hợp các điểm biểu diễn các số phức z trên mặt phẳng tọa độ là một đường thẳng. Viết phương trình đường thẳng đó
A. 4x+6y-3=0
B. 4x-6y-3=0
C. 4x+6y+3=0
D. 4x-6y+3=0
Xét các số phức z thỏa mãn ( z ¯ +i)(z+2) là số thuần ảo. Trên mặt phẳng tọa độ, tập hợp tất cả
các điểm biểu diễn các số phức z là một đường tròn có bán kính bằng
A. 1
B. 5 4
C. 5 2
D. 3 2
Tập hợp các điểm biểu diễn số thức z thỏa mãn |z+2| = |z-i| là một đường thẳng có phương trình
A. 4x + 2y + 3 = 0
B. 2x + 4y + 13 = 0
C. 2x - 4y + 13 = 0
D. x = 4 + t y = - 2 + t z = 1 + t
Trong mặt phẳng phức, tập hợp các điềm biểu diễn của sổ phức z thỏa mãn điểu kiện z + 1 = i - z đường thẳng △ có phương trình:
Tập hợp tất cả các điểm biểu diễn số phức z=x+yi,x,y thuộc R thỏa mãn |z-i|=4 là đường cong có phương trình
A.
B.
C.
D.