Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): x²+y²+z²-x+2y+1=0. Tìm tọa độ tâm I và bán kính R của (S).
A. I(-1/2;1;0) và R = 1/4
B. I(1/2;1;0) và R = 1/2
C. I(1/2;-1;0) và R = 1/2
D. I(-1/2;1;0) và R = 1/2
Mặt cầu (S) tâm I ( 2 ; 3 ; - 1 ) cắt đường thẳng d : x - 11 2 = y 1 = z + 25 - 2 tại 2 điểm A, B sao cho A B = 16 có bán kính là:
A. R = 4
B. R = 15
C. R = 16
D. R = 17
#2H3Y1-3~Trong không gian Oxyz, cho mặt cầu (S): (x-1)²+(y+2)²+z²=25. Tìm tọa độ tâm I và bán kính R của mặt cầu (S).
A. I(1;-2;0), R=5
B. I(-1;2;0), R=25
C. I(1;-2;0), R=25
D. I(-1;2;0), R=5.
Trong không gian Oxyz, cho mặt cầu ( S ) : ( x + 1 ) 2 + ( y - 2 ) 2 + ( z - 1 ) 2 = 9 . Tìm tọa độ tâm I và bán kính R của mặt cầu (S).
A. I(-1;2;1), R=9
B. I(1;-2;-1), R=9
C. I(1;-2;-1), R=3
D. I(-1;2;1), R=3
#2H3Y1-3~Trong không gian với hệ trục tọa độ Oxyz, cho mặt cầu (S): (x+1)²+(y-2)²+(z-1)²=9. Tìm tọa độ tâm I và tính bán kính R của mặt cầu (S).
A. I(-1;2;1) và R=3
B. I(-1;2;1) và R=9
C. I(1;-2;-1) và R=3
D. I(1;-2;-1) và R=9.
Trong không gian Oxyz, cho mặt cầu (S) có phương trình là:
( x - 1 ) 2 + ( y + 2 ) 2 + ( z + 3 ) 2 = 25
Tìm tọa độ tâm I và bán kính R của mặt cầu (S)
A. I(1; -2; -3); R = 25
B. I(-1; 2; 3); R = 5
C. I(-1; 2; 3); R = 25
D. I(1; -2; -3); R = 5
Trong không gian với hệ tọa độ Oxyz, cho điểm A (1;0;-1) và mặt phẳng (P): x+y-z-3=0. Gọi (S) là mặt cầu có tâm I nằm trên mặt phẳng (P), đi qua điểm A và gốc tọa độ O sao cho diện tích tam giác OIA bằng 17 2 . Tính bán kính R của mặt cầu (S).
A. R=3.
B. R=9
C. R=1
D. R=5.
Cho I(2; -4; 1). Xác định bán kính R của mặt cầu (S) tâm I, cắt trục Oy tại A, B sao cho AB = 4
Trong không gian hệ tọa độ Oxyz, cho mặt cầu (S): ( x - 1 ) 2 + ( y + 2 ) 2 + ( z - 3 ) 2 = 4 . Tìm tọa độ tâm I và bán kính R của mặt cầu đó
A. I(-1;2;3), R=2
B. I(-1;2;-3), R=4
C. I(1;-2;3); R=2
D. I(1;-2;3), R=4