Cho hệ phương trình
\(\left\{{}\begin{matrix}-2mx+y=5\\mx+3=1\end{matrix}\right.\)
Tìm m để hpt có nghiệm dương duy nhất
cho hệ PT \(\left\{{}\begin{matrix}x+my=m+1\\mx+y=3m-1\end{matrix}\right.
\)
a) Tìm m để hệ trên có nghiệm duy nhất sao cho x,y đạt GTNN
Mọi Ng giúp em với
Ai làm hết em tick đúng nha ( trước 19:00 hôm nay)
Bài 1: Giải hệ phương trình sau theo m
a, \(\left\{{}\begin{matrix}x-my=m^2+1\\mx+y=m^2+1\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}x+y=m-2\\\left(m+2\right)x-4y=m^2-4\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}2x+my=m+2\\\left(m+1\right)x+2my=2m+4\end{matrix}\right.\)
d, \(\left\{{}\begin{matrix}mx+2y=3\\m^2x-4y=-6\end{matrix}\right.\)
cho hệ phương trình với là tham\(\left\{{}\begin{matrix}x+y=2m+1\\2x-y=m+2\end{matrix}\right.\) số tìm m để hpt có nghiệm (x;y)thỏa mãn (x+1)(y-3)<0
Cho \(\left\{{}\begin{matrix}x +my=2\\mx-2y=1\end{matrix}\right.\)a) tìm \(m\in Z\) để hệ có nghiệm duy nhất (x; y) sao cho x lớn hơn 0 và y lớn hơn 0 b) tìm \(m\in Z\) để hệ có nghiệm duy nhất (x; y) sao cho (x; y) nguyên
Bài 4: Cho hệ phương trình\(\left\{{}\begin{matrix}\left|x\right|+x+\left|y\right|+y=2000\\\left|x\right|-x+\left|y\right|-y=k\end{matrix}\right.\)
Trong đó k là một số cho trước. Biết rằng hệ phương trình đã cho có đúng 2 nghiệm phân biệt (x,y) = (a,b) và (c,d). Tính tổng a+b+c+d
Bài 5: Với giá trị nào của m thì hệ \(\left\{{}\begin{matrix}mx+y=4\\x-my=1\end{matrix}\right.\)
có nghiệm thoả mãn x+y=\(\frac{8}{m^2+1}\)
Hãy tìm x,y sau đó
Mọi Ng giúp em với
cho hệ phương trình
\(\left\{{}\begin{matrix}-2mx+y=5\\mx+3y+1\end{matrix}\right.\)
a)giải hệ phương trình khi m=2
b)giải hệ phương trình theo m
c)tìm m để hệ có nghiệm (x;y) là các số dương
d)tìm m để hệ phương trình có nghiệm thỏa mãn x^2+y^2=1
giải hệ pt bằng phương pháp thế:
\(\left\{{}\begin{matrix}3x-y=2m+3\\x+2y=3m+2\end{matrix}\right.\)
a,giải hệ pt biết m=2
b,tìm m để hpt có nghiệm x,y t/m.
cho hệ phương trình : \(\left\{{}\begin{matrix}x+my=3m\\mx-y=m^2-2\end{matrix}\right.\)
a, giải hệ khi m=3
b, tìm m để hệ (1) có nghiệm(x;y) thỏa mãn \(x^2-2x+y>0\)