Chị ko biết em nhe nói như toán lớp 10 vậy
Chị ko biết em nhe nói như toán lớp 10 vậy
cho hình thang ABCD có AB song song CD ( AB< CD) và M là trung điểm của AD. Qua M vẽ đường thẳng song song với 2 đáy của hình thang cắt cạnh bên BC tại N và cắt 2 đường chéo BD và AC lần lượt tại E. F.
a) Chứng mình rằng N, E, F lần lượt là trung điể cạnh BC , BD, AC.
b) Gọi I là trung điểm của AB. Đuo82ng thẳng vuông góc với IE tại E và đường thẳng vuông góc với IF tại F cắt nhau ở K. Chứng minh KC = KD.
Cho tam giác ABC có AB = 8 cm AC = 6 cm BC= 10cm. Đường trung trực của BC cắt AC tại D cắt AB ở F. E thuộc tia đối của BD sao cho DE = DC
a) Tam giác ABC vuông tại A
b) Tam giác BCE vuông
c) BE\(\perp\)CE
Không cần vẽ hình đâu
Bài 1: Cho tam giác ABC vuông tại A có AB=6cm, AC=8cm, đường phân giác BI. Kẻ IH vuông góc với BC (H thuộc BC). Gọi K là giao điểm của AB và IH.
a) Tính BC?
b) Chứng minh tam giác ABI=tam giác HBI
c) Chứng minh BI là đường trung trực của đoạn thẳng AH
d) Chứng minh IA<IC
e) Chứng minh I là trực tâm tam giác ABC
Bài 2: Cho tam giác ABC vuông tại A, trên cạnh BC lấy điểm D sao cho BA=BD. Từ D kẻ đường thẳng vuông góc với BC, cắt AC tại E.
a) Cho AB=5cm, AC=7cm, tính BC?
b) Chứng minh tam giác ABE=tam giác DBE?
c) Gọi F là giao điểm của DE và BA, chứng minh EF=EC
d) Chứng minh BE là trung trực của đoạn thẳng AD
Bài 3: Tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD, AE cắt BC ở K.
a) Chứng minh tam giác ABK cân tại B
b) Chứng minh DK vuông góc BC
c) Kẻ AH vuông góc BC. Chứng minh AK là tia phân giác của góc HAC
d) Gọi I là giao điểm của AH và BD. Chứng minh IK//AC
Bài 4: Cho tam giác ABC có góc A=60độ,, AB<AC, đường cao BH (H thuộc BC).
a) So sánh góc ABC và góc ACB. Tính góc ABH.
b) Vẽ AD là phân giác của góc A (D thuộc BC), vẽ BI vuông góc AD tại I. Chứng minh tam giác AIB=tam giác BHA
c) Tia BI cắt AC ở E. Chứng minh tam giác ABE đều
Bài 5: Tam giác ABC vuông tại A, đường phân giác BD. Kẻ AE vuông góc BD, AE cắt BC ở K.
a) Biết AC =8cm, AB=6cm. Tính BC?
b) Tam giác ABK là tam giác gì?
c) Chứng minh DK vuông góc BC
d) Kẻ AH vuông góc BC. Chứng minh Ak là tia phân giác của góc HAC.
Bài 6: Cho tam giác ABC có AB=3cm, AC=4cm, BC=5cm
a) Tam giác ABC là tam giác gì
b) Vẽ BD là phân giác góc B. Trên cạnh BC lấy điểm E sao cho AB=AE. Chứng minh AD=DE
c) Chứng minh AE vuông góc BD
d) Kéo dài BA cắt ED tại F. Chứng minh AE//FC
Bài 7: Cho tam giác ABC cân tại A. Kẻ AH vuông góc BC tại H.
a) Chứng minh tam giác ABH=tam giácACH
b) Vẽ trung tuyến BM.Gọi G là giao điểm của AH và BM. Chứng minh G là trọng tâm của tam giac ABC
c) Cho AB=30cm, BH=18cm.Tính AH ,AG
d) Từ H kẻ HD // với AC (D thuộc AB) .Chứng minh ba điểm C,G,D thẳng hàng .
Bài 8: Cho tam giác ABC vuông tại A . Biết AB=3cm,AC=4cm
a)Tính BC
b) Gọi M là trung điểm của BC. Kẻ BH vuông góc AM tại H, CK vuông góc AM tại K. Chứng minh tam giác BHM=tam giac CKM
c)Kẻ HI vuông góc BC tại I .So sánh HI và MK
d) So sánh BH+ BK với BC
Cho tam giác ABC vuông tại A (AB<AC). Vẽ (O) đường kính AC cắt BC tại D. Gọi H và K lần lượt là trung điểm của AD và DC. Tia OH cắt AB tại E, tia OK cắt ED tại N và cắt (O) tại I. Chứng minh:
a) AD là đường cao của tam giác ABC.
b) DE là tiếp tuyến (O)
c) Tứ giác OHDK là hình chữ nhật
d) Tia DI là tia p/giác góc NDC .
e) Gọi S là giao điểm của OB với AD. Từ S vẽ đường thẳng vuông góc với AO cắt tia OH tại Q. Chứng minh 3 điểm A,Q,N thẳng hàng
Cho tam giác ABC nhọn có AB < AC < BC O là giao điểm ba tia phân giác các góc trong của tam giác. Kẻ OH vuông góc AC tại H, O1 vuông góc BC tại I.
2) Trên đoạn IC lấy K sao cho IK = AH , gọi M là giao điểm của AK và HI. Chứng minh M là trung điểm của AK.
1) Chứng minh ACHI cần.
3) Chứng minh B, O, M thẳng hàng.
Bài toán 13. Cho ΔABC vuông cân tại A, trung tuyến AM. Lấy E ∈ BC. BH, CK ⊥ AE (H, K ∈ AE). Chứng minh rằng Δ MHK vuông cân.
Bài toán 14. Cho ΔABC có góc ABC = 500; góc BAC = 700. Phân giác trong góc ACB cắt AB tại M. Trên MC lấy điểm N sao cho góc MBN = 400. Chứng minh rằng: BN = MC.
Bài toán 15. Cho ΔABC. Vẽ ra phía ngoài của tam giác này các tam giác vuông cân ở A là ABE và ACF. Vẽ AH ⊥ BC. Đường thẳng AH cắt EF tại O. Chứng minh rằng O là trung điểm của EF.
Bài toán 16. Cho ABC. Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC vẽ các đường thẳng song song với AB, AC chúng cắt xy theo thứ tự tại D và E. Chứng minh rằng:
a. ΔABC = ΔMDE
b. Ba đường thẳng AM, BD, CE cùng đi qua một điểm.
Bài toán 17. Cho ABC vuông tại A. Trên cạnh BC lấy hai điểm M và N sao cho BM = BA; CN = CA. Tính góc MAN
Bài toán 18. Cho đoạn thẳng MN = 4cm, điểm O nằm giữa M và N. Trên cùng một nửa mặt phẳng bờ MN vẽ các tam giác cân đỉnh O là OMA và OMB sao cho góc ở đỉnh O bằng 450. Tìm vị trí của O để AB min. Tính độ dài nhỏ nhất đó.
Cho tam giác ABC vuông tại A (AB < AC). Gọi M là trung điểm của BC. D, E lần lượt là hình chiếu của M lên AB và AC.
a) Chứng minh: ADME là hình chữ nhật
b) Chứng minh: BDEM là hình bình hành
c) Gọi O là giao điểm của BE và DM, I là trung điểm của EC. Chứng minh: AOMI là hình thang cân
d) Vẽ đường cao AH của tam giác ABC. Tính số đo góc DHE
Thật ra mình chỉ cần phần d thôi nhé
Cho tam giác ABC (AB <AC có góc B= 60 độ ). Hai phân giác AD và CE của tam giác ABC cắt nhau ở I, từ trung điểm M của BC kẻ đường vuông góc với đường phân giác AI tại H, cắt AB ở P, cắt AC ở K. a) Tính góc AIC b) Tính độ dài cạnh AK biết PK = 6cm, AH = 4 cm. c) Chứng minh tam giác IDE cân.