Cho hình vuông ABCD,lấy M trên đường chéo AC . Gọi E và F lần lượt là hình chiếu của M trên AD và DC, K là giao điểm của Em với BC, H là giao điểm của BM với EF
a) c/m MKCF là hình vuông
b) tính diện tích tứ giác ABKC, biết diện tích hình vuông MKCF=16cm2 và ME/MK=1/2
c) c/m tam giác MEF=KBM. từ đó suy ra BH vuông góc với EF
d) c/m 3 đường thẳng BH,AF,CE dồng quy
bài 1:tứ giác ABCD có E,F,G,H theo thứ tự là trung điểm của AB,BD,DC,CA.Tìm điều kiện của ABCD để EFGH là hình vuông?
bài 2:cho hình vuông ABCD,M nằm trên đường chéo AC.Gọi E,F theo thứ tự là các hình chiếu của M trên AD,CD.Chứng minh rằng a)BM vuông góc với EF
b)Các đường BM,À,CE đồng quy
bài 3:Cho M là điểm bất kì trên đoạn thẳng AB.Vẽ về 1 phía của AB là hình vuông ABCD,BMEF
a)AE vuông góc với BC
B)Gọi H là giao điểm AE và BC
Chứng minh rằng D,H,F thẳng hàng
cho hình vuông ABCD, điểm M nằm trên đường chéo AC. Gọi E, F theo thứ tự là các hình chiếu của M trên AD, CD. CMR :
a) BM vuông góc với EF
b) Các đường thẳng BM, AF, CE đồng qui
cho hình vuông ABCD, điểm M nằm trên đường chéo AC. Gọi E, F theo thứ tự là các hình chiếu của M trên AD, CD. CMR :
a) BM vuông góc với EF
b) Các đường thẳng BM, AF, CE đồng qui
Cho hình vuông ABCD . Điểm M nằm trên đường chéo AC. Gọi E,F theo thứ tự là hình chiếu của M trên AD, CD. Chứng minh rằng:
a.BM vuông góc với EF
b, Các đường thẳng BM, AF, CE đồng quy.
cho hình vuông ABCD điểm M nằm trên đường chéo AC . gọi E,F theo thu tự là hình chiếu vuông góc của M trên AD và CD. a)Chứng minh rằng:tứ giác EMFD là hình chữ nhật
b)Tìm vị trí của điểm M trên AC để DM vuông góc với EF
c)chứng minh : các đường thẳng BM,AF,CE đồng quy
-Cho tam giác ABC vuông cân tại A. Gọi I, K theo thứ tự là trung điểm của AB, AC. Gọi H,D thứ tự là hình chiếu của I,A trên BK, M là hình chiếu của A trên HI. O là giao điểm của BM và AC ,P là giao điểm của AB và DM
a) C/m tam giác DAK = tam giác HBI
b) Tính số góc ADC
c)C/m OP vuông góc với BC
help meeeee!!!
Cho hình vuông ABCD điểm M thuộc AC, gọi E, F lần lượt là hình chiếu của M trên AD, DC.
Chứng minh: BM vuông góc với EF
# đường BM, AF, CE đồng quy.
Bài1:Cho tam giác ABC,M là điểm nằm trong tam giác. Gọi D là giao điểm của AM và BC, E là giao điểm của BM và CA. F là giao điểm của CM và AB, đường thẳng đi qua M và song song với BC cắt DE, DF lần lượt tại K và I. Cmr MI=MK.
Bài 2:Cho tam giác ABC, các đường trung tuyến BM, CN cắt nhau tại G, K là điểm trên cạnh BC, đường thẳng đi qua K và song song CN cắt AB ở D, đường thẳng đi qua K và song song với BM cắt AC ở E. Gọi I là giao điểm của KG và DE. Cmr I là trung điểm của DE.
Bài 3:Cho tam giác ABC đều. Gọi M, N là các điểm trên AB, BC sao cho BM=BN. Gọi G là trọng tâm của tam giác BMN. I là trung điểm của AN, P là trung điểm của MN.Cmr:
a, tam giác GPI và tam giác GNC đồng dạng.
b, IC vuông góc với GI.
Bài 4:Cho tam giác ABC vuông tại A, đường cao AH. I là trung điểm của AC, F là hình chiếu của I trên BC. Trên nửa mặt phẳng bờ là đường thẳng chứa AC, vẽ Cx vuông góc với AC cắt IF tại E. Gọi giao điểm của AH, AE với BI theo thứ tự G và K. Cmr:
a,Tam giác IHE và tam giác BHA đồng dạng.
b, Tam giác BHI và tam giác AHE đồng dạng.
c, AE vuông góc với BI.
LÀM ƠN HÃY GIÚP MÌNH NHA. MÌNH ĐANG RẤT VỘI. THANK KIU CÁC BẠN!!!😘😘😘