xét tam giác ABC và tam giác ADC có:
AB=AD (g.t)
BC=DC (g.t)
AC chung (g.t)
=> tam giác ABC=tam giác ADC
xét tam giác ABC và tam giác ADC có:
AB=AD (g.t)
BC=DC (g.t)
AC chung (g.t)
=> tam giác ABC=tam giác ADC
cho tam giác ABC vuông tại B, tia phân giác của góc A cắt BC tại D. Từ D vẽ DE vuông góc với AC (E thuộc AC)
a. Chứng minh BD=DE
b. Hai đường thẳng AB và ED cắt nhau tại F. Chứng minh tam giác ADF = tam giác ADC
c. Chứng minh BA+ BC>DE+AC
Cho tam giác ABC cạnh A = 90 độ, phân giác ABC cắt AC tại M, kẻ MD vuông góc với BC, MD cắt AB tại E
a) Chứng minh BA=BD; MA=MD
b) Chứng minh rằng: MB vuông góc với AD
c) Chứng minh rằng: AE=CD
d) Chứng minh rằng:BM vuông góc CE
e) Chứng minh rằng: AD song song CE
Cho tam giác ABC vuông tại B. Vẽ phân giác AD. Từ D vẽ DE vuông AC
a) Chứng Minh Rằng: CD > BD
b) DE cắt AB tại F. CMR: Tam giác ADF= tam giác ADC
giúp mik vs T.T
Cho tam giác ABC cân tại A, kẻ BD vuông AC, CE vuông AB, BD cắt EC tại I
a. C/m: tam giác ADC = tam giác CEB
b. So sánh góc IBE với góc ICD
c. Đường thẳng AI cắt BC tại H. Chứng minh rằng: AI vuông BC tại H
d. C/m: ED // BC
Cho tam giác ABC vuông tại A, có Góc B bằng 600.
Trên tia đối của tia AB lấy điểm D sao cho A là trung điểm của BD. Chứng minh
. ABC =ADC.
Chứng minh tam giác CBD cân.
Gọi K là trung điểm của BC. Đường thẳng DK cắt AC tại M. Chứng minh MC = 2MA.
Đường trung trực của cạnh AC cắt đường thẳng DC tại Q. Chứng minh 3 điểm B,M, Q thẳng hàng.
cho tam giác ABC vuông tại B, phân giác AD. Từ D kẻ DE vuông góc với AC
a) CM: BD = DE
b) CD> BD
c) ED cắt AB tại F. Chứng minh tam giác ADF= ADC
d ) BA +BC> DE + AC
BÀI 1 cho tam giác ABC vuông tại A.Kẻ BD là phân giác của góc B.Kẻ AI vuông góc BD tại I.AI cắt BC tại E
a) chứng minh AB=EB
b) chứng minh tam giác BED vuông
c) DE cắt AB tại F, chứng minh AE//FC
BÀI 2 cho tam giác ABC cân tại A, có BD và CE là hai đường trung tuyến cắt nhau tại I
a) chứng minh tam giác IBC cân
b)lấy O thuộc tia IC sao cho IO=IE.Gọi K là trung điểm của IA.Chứng minh AO, BD, CK đồng quy
BÀI 3 cho tam giác ABC cân tại A, kẻ tia phân giác của góc BAC cắt BC tại H.Biết AB=15cm, BC=18cm
a)so sánh góc A và góc C
b)chứng minh rằng tam giác ABH = tam giác ACH
c)vẽ trung tuyến BD của tam giác ABC cắt AH tại G.Chứng minh rằng: tam giác AEG = tam giác ADG
d)tính độ dài AG
e) kẻ đường thẳng CG cắt AB ở E, chứng minh rằng: tam giác AEG = tam giác ADG
BÀI 4 cho tam giác ABC vuông tại A, trên BC lấy điểm D sao cho BA=BD.Qua D kẻ đường vuông góc với BC cắt AC tại E, qua C kẻ đường vuông góc với BE tại H cắt AB tại F
a)chứng minh tam giác ABE = tam giác DBE
b) chứng minh tam giác BCF cân
c) chứng minh 3 điểm F.D,E thẳng hàng
d)trên cạnh CB lấy điểm M sao cho CA=CM.Tính số đo góc DAM
BÀI 5 cho tam giác ABC cân tại A, kẻ BD vuông góc AC, kẻ CE vuông góc AB, BD và CE cắt nhau tại I
a)chứng minh rằng tam giác BDC = tam giác CEB
b)so sánh góc IBE và góc ICD
c) đường thẳng AI cắt BC tại H, chứng minh AI vuông góc BC tại H
BÀI 6 cho tam giác ABC vuông tại A, biết AB=6cm, AC=8cm
a)tính BC
b)trung trực của BC cắt AC tại D và cắt AB tại F, chứng minh góc DBC=DCB
c) trên tia đối của tia DB lấy E sao cho DE=DC, chứng minh tam giác BCE vuông và DF là phân giác góc ADE
d) chứng minh BE vuông góc FC
Cho tam giác ABC vuông tại A có đường cao AH. Tia phân giác của góc HAB cắt BC tại D và tia phân giác của góc ACB cắt AD tại E. Gọi O là giao điểm của AH và CE. Chứng minh O là trực tâm của tam giác ADC.
CHO TAM GIÁC ABC CÓ BAC=120, AC=2AB. ĐƯỜNG THẲNG QUA A VUÔNG GÓC VỚI AC CẮT ĐƯỜNG TRNG TỰC CỦA BC TẠI O. VẼ TAM GIÁC ĐỀU ABD. CHỨNG MINH
A, TAM GIÁC ADC VUÔNG
B, TAM GIÁC OAB=TAM GIÁC OAD
C, TAM GIÁC OBC ĐỀU