điểm H ở đâu vậy bạn?
điểm H ở đâu vậy bạn?
cho hình vuông ABCD, M nằm bất kì treen BD. kẻ MH vuông góc AB, MK vuông góc AD. MK cắt BC tại Q. HQ=MB và AMHK là hc nhật
C/m CM vuông góc HK
cho hình vuông ABCD, gọi O là tâm của hình vuông. một đường thẳng qua O cắt AD tại P, cắt BC tại Q.
a) cm AP=CQ
b) kẻ Px vuông góc AC tại E(E thuộc AC). kẻ Qy vuông góc BD tại F(F thuộc BD), Px và Qy cắt nhau tại M. cm ÈM là hình chữ nhật.
c) cm M thuộc cạnh AB
c) k thuộc BC sao cho CK=BD. cm MO vuông góc với OK.
cac bạn giải giúp mình nhá
Cho hình chữ nhật ABCD. Hai đường chéo AC và BD cắt nhau tại O. Gọi N và E lần lượt là trung điểm của AD và AB. Nối NE cắt AC ở I. Tia BI cắt tia ON ở F. Điểm M di độngtên đoạn BD. Kẻ MH vuông góc với BC ( H thuộc BC) và MK vuông góc với CD ( K thuộc CD)
a) Chứng minh tứ giác OAFD là hình thoi
b) Chứng minh BH.HC + CK.KD = BM.MD
c) Xác định vị trí điểm M trên BD để (BH.HC+CK.KD) lớn nhất
cho tam giác ABC vuông tại A và M là trung điểm BC. từ M kẻ MH vuông góc AB ( H thuộc AB) và MK vuông góc AC ( K thuộc AC) ; a) chứng minh: AHMK là hình chữ nhật; b) chứng minh:BHKM là hình bình hành;c) gọi E trung điểm của MH. chứng minh:B,E,K thẳng hàng
Cho hình chữ nhật ABCD (AB>AD). Trên cạnh AD,BC lần lượt lấy các điểm M, N sao cho AM=CN
A) CHỨNG MINH RẰNG BM//DN
B) Gọi O là trung điểm của BD. CHỨNG MINH AC, BD, MN đồng quy tại O
C) Qua O vẽ đường thẳng d vuông góc với BD, d cắt AB tại P, cắt CD tại Q. CHỨNG MINH: Tứ giác PBQD là hình thoi
D) Đường thẳng qua B song song với PQ và đường thẳng qua Q song song với BD cắt nhau tại K. CHỨNG MINH: Tứ giác OBKQ là hình chữ nhật và BC _|_(vuông góc ) OK
Cho ∆ABC vuông tại A,gọi M là trung điểm của cạnh BC . từ M kẻ MH vuông góc với AB tại H , MK vuông góc với AC tại K. 1) Chứng minh tứ giác AHMK là hình chữ nhật. 2) Gọi E là trung điểm của HM .Chứng minh : a) H là trung điểm của AB. b) Ba điểm B,E,K thẳng hàng. 3) Kẻ Ax song song với BC , cắt tia MK tại D . Chứng minh : a) Tứ giác ABMD là hình bình hành? Từ đó suy ra AD=AM. b) Tứ giác AMCD là hình thoi.
Bài 1: Cho tam giác ABC vuông tại A, gọi M là trung điểm của cạnh BC, từ M kẻ MH vuông góc với AB tại H, MK vuông góc với AC tại K.
1) Chứng minh tứ giác AHMK là hình chữ nhật.
2) Gọi E là trung điểm của HM. Chứng minh:
a. H là trung điểm của AB.
b. Ba điểm B, E, K thẳng hàng. (HD: Cm: BMKH là hình bình hành.
3) Kẻ tia Ax song song với BC, cắt tia MK tại D. Chứng minh:
a. Tứ giác ABMD là hình bình hành? Từ đó suy ra AD = AM.
b. Tứ giác AMCD là hình thoi.
Bài 5: Cho tam giác ABC vuông tại A ( AB< AC), đường cao AH. Trên cạnh AC lấy điểm D sao cho AD = AB, Vẽ DK vuông góc với BC tại K, DM vuông góc với AH tại M. Gọi I là trung điểm của BD. Chứng minh:
a) MHKD là hình chữ nhật.
b) AH = HK.
c) Góc AHI bằng 450.
cho tam giác ABC vuông tại A (AB<AC),M là trung điểm của cạch BC . Vẽ MD vuông góc với AB(D thuộc AB) và ME vuông góc với AC(E thuộc AC)
a) cm tứ giác ADME là hình chữ nhật
b) đường thẳng qua song song với DE cắt ME tại F.Cm AF=DE
c)cm tứ giác AMCF là hình thoi
d) Từ M kẻ MK vuông góc với AF(k thuộc AF). cm ADEK là hình thang cân.