Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Công An Phường

. Cho hình vuông ABCD, M là một điểm tùy ý trên đường chéo BD. Kẻ ME vuông AB, MF vuông AD .
a) Chứng minh DE=CF .
b) Chứng minh ba đường thẳng DE, BF, CM đồng quy.

An Thy
23 tháng 6 2021 lúc 21:02

Xét \(\Delta DFM\) vuông tại F có \(\angle FDM=45\Rightarrow\Delta DFM\) vuông cân tại F

\(\Rightarrow DF=FM\)

Vì \(\angle MFA=\angle MEA=\angle EAF=90\Rightarrow AEMF\) là hình chữ nhật

\(\Rightarrow AE=FM=DF\)

Xét \(\Delta DCF\) và \(\Delta ADE:\) Ta có: \(\left\{{}\begin{matrix}AD=CD\\DF=AE\\\angle DAE=\angle CDF=90\end{matrix}\right.\)

\(\Rightarrow\Delta DCF=\Delta ADE\left(c-g-c\right)\Rightarrow DE=CF\)

b) \(\Delta DCF=\Delta ADE\Rightarrow\angle DCF=\angle ADE\)

\(\Rightarrow\angle DCF+\angle DFC=\angle ADE+\angle DFC\Rightarrow\angle ADE+\angle DFC=90\)

\(\Rightarrow DE\bot FC\)

Tương tự chứng minh được: \(BF\bot CE\)

Gọi giao điểm của DE,BF là H \(\Rightarrow H\) là trực tâm tam giác CEF

\(\Rightarrow CH\bot EF\left(1\right)\)

FM cắt CB tại G,CM cắt AD tại I

Dễ dàng chứng minh được DCFG là hình chữ nhật

\(\Rightarrow CG=DF=AE\)

Ta có: \(MG=FG-FM=CD-FD==AD-FD=AF\)

Xét \(\Delta CMG\) và \(\Delta EFA:\) Ta có: \(\left\{{}\begin{matrix}MG=AF\\AE=CG\\\angle CGM=\angle EAF=90\end{matrix}\right.\)

\(\Rightarrow\Delta CMG=\Delta EFA\left(c-g-c\right)\Rightarrow\angle AFE=\angle CMG=\angle FMI\)

\(\Rightarrow\angle AFE+\angle FIM=\angle FMI+\angle FIM\Rightarrow\angle AFE+\angle FIM=90\)

\(\Rightarrow CM\bot EF\left(2\right)\)

Từ (1) và (2) \(\Rightarrow C,H,M\) thẳng hàng \(\Rightarrow\) đpcmundefined


Các câu hỏi tương tự
Toại
Xem chi tiết
ễnnguy Hùng
Xem chi tiết
Nguyễn Thị hương Ly
Xem chi tiết
Võ Trương Anh Thư
Xem chi tiết
Nguyễn Bảo Ngọc
Xem chi tiết
Ngô Đức Tiến
Xem chi tiết
Maths is My Life
Xem chi tiết
Vanh Leg
Xem chi tiết
HOẰNG LÊ ANH HÀO
Xem chi tiết