Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyên Thu Thủy

Cho hình vuông ABCD. Lấy điểm E thuộc cạnh BC, Với E ko trùng B và E ko trùng C. Vẽ EF vuông góc với AE, Với F thuộc CD. Đường thẳng AF cắt đg thẳng BC tại G. Vẽ đg thẳng a đi qua điểm A và Vuông góc với AE, đg thẳng a cắt đg thẳng DE tại điểm H.

1/ chứng minh AE/AF = CD/DE

2/ chứng minh rằng tứ giác AEGH là tứ giác nội tiếp

3/ gọi b là tiếp tuyến của đg tròn ngoại tiếp tam giác AHE tại E, biết b cắt đg trung trực của đoạn EG tại K. Chứng minh KG là tiếp tuyến của đg tròn ngoại tiếp tam giác AHE 

giang ho dai ca
4 tháng 6 2015 lúc 11:34

chỉnh lại câu 1 tí:

1)
    + Xét tứ giác AEFD :  ADF +AEF = 90 +90 = 180
    Suy ra: Tứ giác AEFD nội tiếp được đường tròn 
    Suy ra:  EAF = EDF hay EAF = EDC
    + Xét tgAEF và tg EDC :  AEF = ECD = 90 VÀ EAF = EDC
    Suy ra: tgAEF ~  tgDCE =>  .AE /AF = CD/DE

2.

Tứ giác AEFD nội tiếp được đường tròn 
=>  EAF = EDF mặt khác  EAF = EDC mặt khác  : EAF + HAG = 90 VÀ EDC + HEG =90
suy ra: HAG = HEG  suy ra tứ giác AEGH nội tiếp được đường tròn =>  HGE = 90 
Vì HGE = HAE = 90 ,suy ra đường tròn này có tâm O là trung điểm của AE.

3.

Đường tròn ngoại tiếp tam giác AHE chính là đường tròn (O).
    + Xét tam giác HGE :   và OH = OE = 1/2. HE => OH = OE = OG.
    + Xét tg OEK và tg OGK : 
OE = OG ; OK chung ;EK = GK( Vì K thuộc đường trung trực của đoạn thẳng EG)
Suy ra  tgOEK =tg OGK (c – c – c) =>  KGO = KEO = 90 độ
Suy ra: KG vuông góc với OG, vậy KG là tiếp tuyến của đường tròn ngoại tiếp tam giác HAE.(đpcm).


Các câu hỏi tương tự
phạm ngọc anh tín
Xem chi tiết
Hùng
Xem chi tiết
khánh huyền
Xem chi tiết
ngoc giang
Xem chi tiết
Duy Anh
Xem chi tiết
Kinomoto Kasai
Xem chi tiết
Chu Hồng Trang
Xem chi tiết
Nguyễn thị thảo
Xem chi tiết
Lương Thanh Thảo
Xem chi tiết