Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Thị Xuân Hòa

Cho hình vuông ABCD có cạnh là a. M là một điểm nằm trên đường chéo BD; E,F là hình chiếu của M trên AB và AD; BF và CE cắt nhau tại I. 

a/ Chứng minh: CE=BF, CM=EF

b/ Chứng minh: Khi M thay đổi trên BD thì I luôn cách 1 điểm cố định một khoảng bằng a/2. Hãy tìm điểm cố định đó

c/ Chứng minh: Các đường thẳng: BF, CM, DE đồng quy

Nguyễn Tất Đạt
20 tháng 10 2018 lúc 12:28

A B C D E F M I S

a) Dễ thấy: \(\Delta\)BME vuông cân tại E => BE = ME (1)

Xét tứ giác AEMF: ^FAE = ^AEM = ^AFM = 900 => Tứ giác AEMF là hình chữ nhật => ME = AF (2)

(1); (2) => BE = AF => \(\Delta\)CBE = \(\Delta\)BAF (c.g.c) => CE = BF (đpcm)

Đồng thời: ^BCE= ^ABF. Mà ^ABF + ^CBF = 900

Nên ^BCE + ^CBF = 900 hay ^BCI + ^CBI = 900 => CE vuông góc BF tại I => ^EBF = ^MEC (Cùng phụ ^BEC)

Xét \(\Delta\)BEF và \(\Delta\)EMC có: ^EBF = ^MEC; BE = EM; BF = EC => \(\Delta\)BEF = \(\Delta\)EMC (c.g.c)

=> EF = MC (2 canh tương ứng) (đpcm).

b) Gọi S là trung điểm cạnh BC

Xét \(\Delta\)BIC: Vuông tại I; trung tuyến IS => IS = BC/2 = a/2

=> I luôn cách S 1 khoảng không đổi bằng a/2. Ta có: S là trung điểm cạnh BC nên S cố định => ĐPCM.

c) C/m tương tự câu a: DE vuông góc CF

Do CE vuông góc BF (cmt) nên ^EIF = 900 => ^IFE + ^IEF = 900 hay ^CEF + ^BFE = 900

Mà \(\Delta\)BEF = \(\Delta\)EMC (cmt) => ^BFE = ^ECM (2 góc tương ứng)

Nên ^CEF + ^ECM = 900 => CM vuông góc EF 

Xét \(\Delta\)EFC: DE vuông góc CF; BF vuông góc CE; CM vuông góc EF

=> BF; CM; DE đồng qui (đpcm).


Các câu hỏi tương tự
Lê Quý Lâm
Xem chi tiết
Linh Trần
Xem chi tiết
Nguyễn Nhật Nam
Xem chi tiết
Đỗ Tố Quyên
Xem chi tiết
Minato Namikaze
Xem chi tiết
Sông Ngân
Xem chi tiết
võ dương thu hà
Xem chi tiết
Uzumaki Naruto
Xem chi tiết
Tống Thị Ngọc Hà
Xem chi tiết