Cho hình vuông ABCD có cạnh là 12cm. M là trung điểm của AB. N là điểm nằm trên cạnh AD sao cho AN= 2/3 AD. Tính S tam giac MCN.
cho ABCD là hình vuông. Trên cạnh AD lấy điểm M, trên tia đối của tia AD lấy điểm N, trên tia đối của AB lấy điểm E sao cho DM= AN= BE. Vẽ hình vuông AMPQ ( Q thuộc cạnh AB). Chứng minh rằng MPEC là hình vuông
1) Cho\(\Delta ABC\)cân tại A. Trên cạnh AB lấy điểm E, trên cạnh AC lấy điểm E sao cho AD=CE. Gọi O là trung điểm của DE, K là giao điểm của AO và BC.C/m tứ giác ABCD là hình bình hành
2) Cho hình vuông ABCD có các cạnh bằng a. Gọi M,N là 2 điểm lần lượt trên cạnh 2 cạnh AB,AD sao cho chu vi \(\Delta AMN\)=2a. C/m: khoảng cách từ C đến đường thẳng MN không phụ thuộc vào vị trí của 2 điểm M,N trên cạnh AB, AD
1. Cho hình chữ nhật ABCD, AB= 2AD. Trên cạnh AD lấy điểm M, trên cạnh BC lấy điểm P sao cho AM= CP. Kẻ BH vuông góc với AC tại H. Gọi Q là trung điểm của CH, đường thẳng kẻ qua P song song với MQ cắt AC tại N.
a) Khi M là trung điểm của AD. CM: BQ⊥NP
b) Đường thẳng AP cắt CD tại điểm F.
CMR: \(\dfrac{1}{AB^2}=\dfrac{1}{AP^2}+\dfrac{1}{4AF^2}\)
2. Cho tam giác ABC vuông tại A trên cạnh BC lấy điểm D bất kỳ. Gọi E và F lần lượt là hình chiếu của D trên cạnh AB và AC.
Trên cạnh BC lấy điểm M sao cho ^BAD=^CAM
CMR: \(\dfrac{DB}{DC}.\dfrac{MB}{MC}=\dfrac{AB^2}{AC^2}\)
Cho hình chữ nhật ABCD có O là giao điểm hai đường chéo AC và BD . Lấy điểm P trên cạnh BD ( P nằm giữa O và D ). Gọi M là điểm đối xứng với C qua P.
a) Chứng minh AMDB là hình thang. Xác định vị trí điểm P trên BD để AMBD là hình thang cân.
b) Kẻ ME vuông góc AD, MF vuông góc AB. Chứng minh rằng EF // AC và E, F, P thẳng hàng.
c) Trên cạnh AB lấy điểm X , trên DC lấy điểm J sao cho AX=CJ, lấy N là điểm tùy ý trên AD. Gọi G là giao điểm của XJ và NB, H là giao điểm của XJ và NC . Tính diện tích của tứ giác AXJD theo diện tích ABCD =S. Chứng minh rằng S AXGN + S NHJD = S GBCH
d) Gọi K là điểm thuộc cạnh AB sao cho góc ADK = 15 độ và AB = 2BC . Chứng minh tam giác CDK cân
1. Cho hình vuông ABCD có độ dài đường chéo bằng 12 cm. M là một điểm bất kỳ trên cạnh AB, O là giao điểm hai đường chéo. Đường thẳng qua O và vuông góc với OM cắt BC tại N. Tính diện tích tứ giác OMBN? .
2. Cho tam giác ABC có diện tích 12cm^2. N là trung điểm BC. M trên AC sao cho AM/AC = 1/3. AN cắt BM tại O. Khi đó diện tích của tam giác OAM là?
Cho hình chữ nhật ABCD có O là giao điểm của 2 đường chéo. Gọi M là trung điểm của cạnh AD. Biết AB=16cm, AD=12cm.
a.Tính diện tích hình chữ nhật ABCD
b.Tính độ dài OM và DM
Cho hình vuông ABCD có M,N nằm trên cạnh AB,AD sao cho AM=AN. Gọi H là hình chiếu của A trên DM.
a)CMR: Góc ANH = góc HCD.
b)CMR: HN vuông góc với HC
Cho hình vuông ABCD cạnh 12cm. Các điểm M, N lần lượt trên các cạnh AB, AD sao cho AM = DN = x.
a) Tính diện tích tam giác AMN theo x.
b) Tìm x để diện tích tam giác AMN bằng 1 9 diện tích hình vuông ABCD