Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Phan Ngọc Tú

Cho hình vuông ABCD có cạnh bằng a. Gọi E;F;G;H lần lượt là trung điểm của các cạnh AB;BC;CD;DA. Gọi M là giao điểm của CE và DF.  Tính diện tích tam giác MDC theo a

Hoàng Lê Bảo Ngọc
15 tháng 10 2016 lúc 11:48

A B C D F E M

Xét tam giác vuông là tam giác BEC và tam giác DCF có CD = BC , BE = CF = 1/2a

=> Tam giác BEC = tam giác DCF (hai cạnh góc vuông)

=> góc CDF = góc BCE mà góc CDF + góc DFC = 90 độ

=> góc ECF + góc DFC = 90 độ hay góc DMC = 90 độ => CE vuông góc DF

Ta chứng minh được tam giác MDC đồng dạng tam giác CDF (g.g)

Áp dụng định lí Pytago có \(DF=\sqrt{CD^2+FC^2}=\sqrt{a^2+\frac{a^2}{4}}=\frac{a\sqrt{5}}{2}\)

\(S_{CDF}=\frac{1}{2}CD.CF=\frac{1}{2}a.\left(\frac{a}{2}\right)=\frac{a^2}{4}\)

Suy ra \(\frac{S_{MDC}}{S_{CDF}}=\left(\frac{CD}{DF}\right)^2=\left(\frac{a}{\frac{a\sqrt{5}}{2}}\right)^2=\left(\frac{2}{\sqrt{5}}\right)^2=\frac{4}{5}\)

\(\Rightarrow S_{MDC}=\frac{4}{5}S_{CDF}=\frac{4}{5}.\frac{a^2}{4}=\frac{a^2}{5}\)

hoang phuc
15 tháng 10 2016 lúc 11:04

chiu

tk nhe

xin do

bye


Các câu hỏi tương tự
Linh Le
Xem chi tiết
Phùng Tuấn Minh
Xem chi tiết
Vũ Huy Hiệu
Xem chi tiết
Nguyễn Tấn Sương
Xem chi tiết
Giao Khánh Linh
Xem chi tiết
Minh Tú Phạm
Xem chi tiết
Lưu Trang Nhung
Xem chi tiết
Trần NgọcHuyền
Xem chi tiết
Trương Ngọc Sang
Xem chi tiết