Do H là tâm của hình vuông ABCD nên:
A M → + B M → + C M → + D M → = A H → + H M → + B H → + H M → + C H → + H M → + D H → + H M → = 4 H M →
Do đó để A M → + B M → + C M → + D M → = H M →
⇔ 4 H M → = H M → ⇔ H M → = 0 → ⇔ H ≡ M
Đáp án D
Do H là tâm của hình vuông ABCD nên:
A M → + B M → + C M → + D M → = A H → + H M → + B H → + H M → + C H → + H M → + D H → + H M → = 4 H M →
Do đó để A M → + B M → + C M → + D M → = H M →
⇔ 4 H M → = H M → ⇔ H M → = 0 → ⇔ H ≡ M
Đáp án D
Cho hình vuông ABCD với P là giao điểm hai đường chéo BD và AC, M là giao điểm thỏa mãn vecto MO= vecto DC + vecto OB. Mệnh đề nào dưới đây đúng A. M đối xứng với C qua B B. M là trung điểm của AD C. M đối xứng với V qua D D. M đối xứng với A qua B
trong mặt phẳng hệ tọa độ Oxy cho hình thang cân ABCD có hai đường chéo BD và AC vuông góc với nhau tại H và AD 2 BC. Gọi M là điểm nằm trên cạnh AB sao cho AB 3 AM N là trung điểm HC. biết B 1 3 đường thẳng HM đi qua T 2 3 đường thẳng DN có phương trình x 2y 2 0 . tìm tọa độ các điểm A,C,D
cho hình thang vuông abcd vuông tại a và b, biết ab=bc=1 và góc adc=45" gọi o là giao điểm của hai đường chéo và m là trung điểm của đoạn ad. tính độ dài vecto om
Câu 8: Cho hình bình hành ABCD. Gọi M, N lần lượt là trung điểm của AD và BC, có bao nhiêu vectơ bằng với DM từ các điểm đã cho? A. 3. B. 4. C. 5. D. Câu 9: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. Chọn khẳng định đúng trong các khẳng định sau.
A. AD BC . B. MQ PN . C. MN QP . D. AB DC .
Câu 10: Cho tam giác ABC với trực tâm H, D là điểm đối xứng với B qua tâm O của đường tròn ngoại tiếp tam giác ABC. Khẳng định nào sau đây là đúng
A. HA CD và AD CH .
B. HA CD và DA HC .
C. HA CD và AD HC .
D. HA CD và AD HC và OB OD .
Câu 1: Cho ABCD là hình vuông cạnh bằng 1. Khi đó độ dài của AC bằng
A. 1. B. 2. C. 2. D. 3.
Câu 2: Cho tam giác ABC vuông tại C có cạnh AC cm BC cm 4 , 3 . Độ dài của vectơ AB là
A. 7 . cm B. 6 . cm C. 5 . cm D. 4 . cm
Câu 3: Cho hình vuông ABCD tâm O, cạnh 2a. Độ dài vectơ DO bằng
A. 2 2. a B. 2 . 2 a C. a 2. D. 2 2. a
Câu 4: Cho đoạn thẳng AB cm 10 , điểm C thỏa mãn AC CB . Độ dài vectơ AC là
A. 10 . cm B. 5 . cm C. 20 . cm D. 15 . c
Cho hình chữ nhật ABCD có AB = 2, AD = 4, điểm M thuộc cạnh BC thỏa mãn BM = 1. Điểm N thuộc đường chéo AC thỏa mãn A N → = x A C → . Giá trị của x để tam giác AMN vuông tại M là
A. 5/8
B. 5/4
C. 5/16
D. 0, 5
Câu 1: cho tam ABC. Có bao nhiêu điểm M thỏa mãn | vecto MA+vectoMB+vectoMC| = 3
a.1
b.2
c.3
d. vô số
Câu 2: cho tam giác ABC đều cạnh a. biết rằng tập hợp các điểm M thỏa mãn đẳng thức |2vectoMA+3vectoMB+4vectoMC|=|vectoMB-vectoMA| là đường tròn cố định có bán kính R. tính bán kính R theo A?
Câu 3: Cho 2 điểm A.B phân biệt và cố định, với I là trung điểm của AB. Tập hợp các điểm M thỏa mãn đẳng thức |2vectoMA+vectoMB|=|vectoMA+2vectoMB| là:
a. đường trung trực của đoạn thẳng AB
b. đường tròn đường kính AB
c. đường trung trực của đoạn thẳng IA
d. đường tròn tâm A, bán kính AB
Cho hình vuông ABCD có cạnh là 10, M là trung điểm của BC.
a) Tính giá trị của | vectơ AB+ vectơ AD| và vectơ DM. vectơ DA
b)Tìm tập hợp điểm P thỏa mãn vectơ PA.vectơ BC=10
Cho hình vuông ABCD có cạnh \(2\sqrt{3}\). Gọi E, F lần lượt là trung điểm AB, BC. M là giao điểm của DF và CE sao cho \(M\left(3;6\right)\). Phương trình đường thẳng AD là \(x+2y-7=0\). Tìm tọa độ điểm A, biết \(y_A>2\)
Cho tứ giác ABCD. Gọi E,F,G,H là trung điểm của bốn cạnh AB,BC,CD,DA; M,N là trung điểm hai đường chéo BD và AC. O là trung điểm của EG. Chứng minh: véc tơ AB + véc tơ AC + véc tơ AD = 4 . vecto AO
mọi người ơi giúp em với, bạn nào giúp mình sẽ gửi 1 card điện thoại 50k thay lời cám ơn ạ.