\(B=1+3+3^2+3^3+...+3^{2018}\)
=> \(3B=3+3^2+3^3+3^4+...+3^{2019}\)
=> \(2B=3B-B=\left(3+3^2+3^3+3^4+...+3^{2019}\right)-\left(1+3+3^2+3^3+...+3^{2018}\right)\)
=> \(2B=3^{2019}-1\)
=> \(B=\frac{3^{2019}-1}{2}\)
\(B=1+3+3^2+3^3+...+3^{2018}\)
=> \(3B=3+3^2+3^3+3^4+...+3^{2019}\)
=> \(2B=3B-B=\left(3+3^2+3^3+3^4+...+3^{2019}\right)-\left(1+3+3^2+3^3+...+3^{2018}\right)\)
=> \(2B=3^{2019}-1\)
=> \(B=\frac{3^{2019}-1}{2}\)
Cho hình vuông ABCD có AB=a. Gọi M,N lần lượt là 2 điểm tùy ý tren AB,AD sao cho chu vi tam giác AMN=2a. Gọi H là hình chiếu của C trên MN. Chứng minh H luôn thuộc 1 đường tròn cố định khi MN chuyển động trên cạnh AB,AD
hình vuông ABCD có cạnh a. Hai điểm M và N tương ứng thay đổi trên các cạnh AB, AD sao cho chu vi tam giác AMN luôn không đổi và bằng 2a. Chứng minh đườnh thẳng MN luôn tiếp xúc với một đường tròn cố định
1.cho hình vuông ABCD tâm O .Gọi M,N là trung điểm của OA,BC.Chứng minh C,M,N,D nằm trên một đường tròn và DN>MC
2.Cho hình vuông ABCD cạnh a.Lấy M và N trên cạnh AB và AD sao cho chu vi tam giác AMN bằng 2a.Gọi H là hình chiếu của C lên MN.P nằm trên tia đối của tia DA với DP = BM
1) Chứng minh NP = MN
2) So sánh hai tam giác CPN và CMN rồi chứng minh H luôn luôn di động trên một đường cố định
3.Lấy các điểm E,F,G,H trên các cạnh AB,BC,CD,DA của hình vuông ABCD sao cho AE=BF=CG=DH .
1) Chứng minh E,F,G,H nằm trên một đường tròn
2) Gọi O là tâm của hình vuông ABCD.Chứng minh O cũng là tâm EFGH
3) Xác định vị trí của E,F,G,H để diện tích EFGH nhỏ nhất
cho hình vuông ABCD ,gọi M,N là hai điểm tùy ý trên AB,AD sao cho tam giác AMN có chu vi bằng 2a .gọi H là hình chiếu của C trên MN.c/m rằng điểm Hluon thuộc đường tròn cố định khi M,N chuyển động trên AB,AD
Cho hình vuông ABCD tâm O, M là điểm di động trên AB. Trên cạnh AD lấy E sao cho AE=AD. Trên cạnh BC lấy F sao cho BF=BM
a) Chứng minh E,O,F thẳng hàng
b) Gọi H là chân đường vuông góc kẻ từ M xuống EF. Chứng minh 4 điểm A,B,H,O cùng nằm trên 1 đường tròn
c) Chứng minh MH luôn đi qua 1 điểm cố định khi M di chuyển trên AB
MÌNH LÀM ĐƯỢC 2 Ý a VÀ b RỒI CÁC BẠN GIÚP MÌNH GIẢI Ý c NHA :))
Cho hình vuông ABCD cạnh a. trên cạnh CB,CD lầy lượt lấy điểm M,N sao cho chu vi tam giác CMN bằng 2a. gọi giao điểm của đường thẳng BD với các đường thẳng AM,AN lần lượt là E,F. giao điểm của đường thẳng MF và NE là H.
a) Tính góc MAN
b) Chứng minh HA vuông góc với MN
c) Tinh (diện tích AMN) / (diện tích AEF)
Giúp với mình đang cần gấp
Cho hình vuông ABCD. Lấy các điểm P, Q trên các cạnh BA, BC sao cho BP = BQ. Gọi H là chân đường vuông góc hạ từ B xuống CP.
a. CMR: Tam giác HBQ đồng dạng vs tam giác HCD
b. CMR \(\widehat{DHQ}=90^o\)
Cho hình vuông ABCD , cạnh đều bằng a , E và F là 2 điểm di động trên cạnh AB và AD sao cho AE+EF+AF= 2a . Gọi H là hình chiếu vuông góc cuả C trêm EF.
a) c/m : H thuộc 1 đường tròn cố định.
b) Tìm vị trí của E,F sao cho S tam giác CEF lớn nhất
Cho đường tròn tâm O và dây cung BC không đi qua O. Một điểm A chuyển động trên dường tròn (A khác B, C). Gọi M là trung điểm của đoạn AC, H là chân đường vuông góc hạ từ M xuống đường thẳng AB. Chứng minh rằng H nằm trên một đường tròn cố định.