Gọi AE = x thì BE = a-x
Ta có : \(S_{DEF}=S_{ABCD}-S_{ADE}-S_{BEF}-S_{DEC}\)
\(=a^2-\frac{ax}{2}-\frac{x\left(a-x\right)}{2}-\frac{a\left(a-x\right)}{2}\)
\(=\frac{a^2-ax+x^2}{2}=\frac{1}{2}\left[\left(x-\frac{a}{2}\right)^2+\frac{3a^2}{4}\right]\)
\(=\frac{1}{2}\left(x-\frac{a}{2}\right)^2+\frac{3a^2}{8}\ge\frac{3a^2}{8}\)
Dấu "=" xảy ra khi \(x=\frac{a}{2}\Rightarrow\hept{\begin{cases}AE=EB\\BF=FC\end{cases}\Rightarrow}\)M là trung điểm của AC hay M là giao điểm của AC và BD thì diện tích tam giác DEF đạt giá trị nhỏ nhất bằng \(\frac{3a^2}{8}\)
Kẻ ME⊥AB; MK⊥CD; MN⊥AD; MF⊥BC
Dễ có △DKM = △EMF (g.c.g)
=> EF = DM
^DMK = ^EFM mà MK⊥FM nên DM⊥EF tại H
2S[DEF] = DH.EF = EF(EF + MH) = EF^2 + EF.MH = EF^2 + MF.ME
=> 2S[DEF] = x^2 + (a - x)^2 + x(a - x) = x^2 - ax + a^2 = (x - a/2)^2 + 3a^2/4)≥ 3a^2/4
=> S[DEF] ≥ 3a^2/8 <=> x = a/2 <=> E là trung điểm AB <=> M là trung điểm AC
ko hiểu thì thôi nhé