Cho hình trụ có đáy là hai đường tròn tâm O và O’, bán kính đáy bằng chiều cao và bằng 2a. Trên đường tròn đáy có tâm O lấy điểm A, trên đường tròn tâm O’ lấy điểm B. Đặt α là góc giữa AB và đáy. Tính tan α khi thể tích khối tứ diện OO’AB đạt giá trị lớn nhất.
A. tan α = 2
B. tan α = 1 2
C. tan α = 1 2
D. tan α = 1
Cho hình trụ có hai đáy là hai đường tròn (O;R) và (O';R), chiều cao bằng đường kính đáy. Trên đường tròn đáy tâm O lấy điểm A, trên đường tròn đáy tâm O' lấy điểm B. Thể tích của khối tứ diện OO'AB có giá trị lớn nhất bằng:
Cho hình trụ có đáy là hai đường tròn tâm O và O’, bán kính đáy bằng chiều cao và bằng 2a. Trên đường tròn đáy có tâm O lấy điểm A, trên đường tròn tâm O’ lấy điểm B. Đặt α là góc giữa AB và đáy. Biết rằng thể tích khối tứ diện OO’AB đạt giá trị lớn nhất. Khẳng định nào sau đây đúng?
Cho hình trụ có đáy là hai đường tròn tâm O và O’, bán kính đáy bằng chiều cao và bằng 2a. Trên đường tròn đáy có tâm O lấy điểm A, D sao cho A D = 2 3 a ; gọi C là hình chiếu vuông góc của D lên mặt phẳng chứa đường tròn (O’); trên đường tròn tâm O’ lấy điểm B (AB chéo với CD) . Đặt α là góc giữa AB và đáy. Tính tan α khi thể tích khối tứ diện CDAB đạt giá trị lớn nhất.
A. tan α = 3
B. tan α = 1 2
C. tan α = 1
D. tan α = 3 3
Cho hình trụ có tâm hai đáy lần lượt là O và O'; bán kính đáy hình trụ bằng a. Trên hai đường tròn (O) và (O') lần lượt lấy hai điểm A và B sao cho AB tạo với trục của hình trụ một góc 30 ° và có khoảng cách tới trục của hình trụ bằng a 3 2 . Tính diện tích toàn phần của hình trụ đã cho
Cho hình trụ có đáy là hai đường tròn tâm O và O’, bán kính đáy bằng chiều cao và bằng 2a. Trên đường tròn đáy có tâm O lấy điểm A, D trên đường tròn tâm O’ lấy điểm B, C sao cho AB//CD và AB không cắt OO’. Tính AD để thể tích khối chóp O’.ABCD đạt giá trị lớn nhất.
A. A D = 2 2 a
B. A D = 4 a
C. A D = 4 3 3 a
D. A D = 2 a
Một hình trụ có các đáy là hai hình tròn tâm O và O’ bán kính r và có đường cao h = r 2 . Gọi A là một điểm trên đường tròn tâm O và B là một điểm trên đường tròn tâm O’ sao cho OA vuông góc với O’B. Chứng minh rằng các mặt bên của tứ diện OABO’ là những tam giác vuông. Tính thể tích của tứ diện này.
Cho hình trụ có tâm hai đáy lần lượt là O và O' ; bán kính đáy hình trụ bằng a.Trên hai đường tròn (O) và (O') lần lượt lấy hai điểm A và B sao cho đường thẳng AB tạo với trục của hình trụ một góc 30 ° và có khoảng cách tới trục của hình trụ bằng a 3 2 .Tính diện tích toàn phần của hình trụ đã cho.
A. π a 2 3 3 + 2
B. π a 2 3 + 2
C. 2 π a 2 3 + 1
D. 2 π a 2 3 3 + 3
Cho hình nón đỉnh I và đường tròn đáy tâm O. Bán kính đáy bằng chiều cao của hình nón. Giả sử khoảng cách từ trung điểm của IO tới một đường sinh bất kì là 2 . Hai điểm A, B nằm trên đường tròn tâm O sao cho AB = 1/2. Tính thể tích khối tứ diện IABO
A. 63 12
B. 7 6
C. 255 12
D. 5 4