cho hình vuông ABCD, gọi O là giao điểm của hai đường chéo và M là trung điểm của AB, lấy các điểm K và H lần lượt thuộc các cạnh BC và CD sao cho góc KOH = 45 độ. chứn minh rằng AH song song với MK
cho hình vuông ABCD trên các cạnh BC và CD lần lượt lấy các điểm E và F sao cho góc EAF=45 độ. Gọi P và Q theo thứ tự là giao điểm của các đoạn EA, AF với đường chéo BD. chứng minh rằng tam giác AQE vuông cân.
cho hình vuông abcd có o là giao điểm 2 đường chéo. m là trung điểm của ab. trên bc lấy g , trên cd lấy h sao cho goh = 45. chứng minh a, hod dong dang ogb
b, mg song song ah
Cho hình vuông ABCD có độ dài cạnh bằng a. Trên cạnh CB,CD lần lượt lấy điểm M,N sao cho chu vi tam giác CMN là 2a. Gọi giao điểm của đường thẳng BD với các đường thẳng AM,AN lần lượt là E,F. Gọi giao điểm của đường thẳng MF và NE là H
a, Tính số đo góc MAN
b, Chứng minh AH vuông góc với MN
c, Gọi diện tích tam giác AMN, AEF lần lượt là S1,S2. Tính \(\frac{S2}{S1}\)
Bài 1 : Cho hình vuông ABCD có cạnh bằng 3 cm . Chứng minh rằng : 4 đỉnh của hình vuông ABCD cùng nằm trên 1 đường tròn . Hãy tính bán kính đường tròn đó
Bài 2 : Cho tam giác nhọn ABC . Vẽ đường tròn tâm O , bán kính BC , nó cắt các cạnh AB, AC theo thứ tự ở D và E
a)CMR: CD vuông góc với AB , BE vuông góc với AC
b) gọi K là giao điểm của BE và CD. Chứng minh AK vuông góc BC
Bài 3:Cho hình thang ABCD , AB//CD, AB<CD , có góc C=góc D=60 độ , CD=2AD . Chứng minh 4 điểm A, B, C, D cùng thuộc 1 đường tròn. Tính diện tích đường tròn đó biết CD=4cm
Bài 4:Cho tam giác ABC vuông tại A. Trên AB, AC lần lượt lấy các điểm D, E . Gọi M, N, P, Q lần lượt là trung điểm của DE , EB, BC, CD. Chứng minh 4 điểm M, N, P, Q cùng thuộc 1 đường tròn
1 , Cho hình vuông ABCD có góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HD
a , Chứng minh rằng ABMN là hình bình hành .
b , Chứng minh rằng N là trực tâm của tam giác AMD
c , Chứng minh rằng góc BMD = 90 độ
d , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .
2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo AC , BD cắt nhau tại O . Vẽ DE , DF lần lượt vuông góc với AB và BC . Chứng minh rằng tam giác EOF cân.
3 , Cho hình thang ABCD có góc A = 60 độ . Trên tia AD lấy M , trên tia Bc lấy N sao cho AM = DN
a , Chứng minh rằng tam giác ADM = tam giác DBN
b , Chứng minh rằng góc MBN = 60 độ
c , Chứng minh rằng tam giác BNM đều .
4 , Cho hình vuông ABCD , vẽ góc xAy = 90 độ . Ax cắt BC ở M , Ay cắt CD ở N
a , Chứng minh rằng tam giác MAN vuông cân
b , Vẽ hình bình hành AMFN có O là giao điểm 2 đường chéo . Chứng minh rằng OA = OC = \(\frac{1}{2}\) AF và tam giác ACF vuông tại C .
5 , Cho hình vuông ABCD . Trên BC lấy điểm E . Từ A kẻ vuông góc với AE cắtt CD tạ F . Gọi I là trung điểm của EF . M là giao điểm của AI và CD . Qua E kẻ đường thẳng song song với CD cắt AI tại N .
a , Chứng minh rằng MENF là hình thang
b , Chứng minh rằng chu vi tam giác CME không đổi khi E chuyển động trên BC .
Cho tam giác ABC (AB<AC) có ba góc nhọn. Đường tròn tâm O đường kính BC cắt các cạnh AC, AB lần lượt tại E, F. Gọi H là giao điểm của BE và CF. D là giao điểm của AH và BC.
a) Chứng minh : AD vuông góc BC
b) Chứng minh EFDO là tứ giác nội tiếp
c) Trên tia đối của tia DE lấy điểm L sao cho DL = DF. Tính số đo góc BLC
d) Gọi R, S lần lượt là hình chiếu của B,C lên EF. Chứng minh DE + DF = RS và AH.AD=AE.AC
Cho tam giác ABC vuông tại A (AB < AC) có AH vuông góc BC tại H. Trên cạnh BC lấy điểm N sao cho BA = BN. Gọi E là trung điểm của AN và K là giao điểm của AH và BE. Cho AC song song KN. Cho AKNF là hình thoi. Gọi T là giao điểm của đường thẳng AB với NF. Chứng minh tứ giác TANC là hình thang cân.
Bài 4: Cho tam giác ABC vuông tại A có đường cao AH, biết AB=3cm. AC=4cm, trên cạnh AB lấy điểm I sao IA=2IB. Đoạn CI cắt AH tại điểm D. Tính dài đoạn thẳng CD
Bài 5: Cho tam giác đều ABC, điểm M nằm trong tam giác ABC sao cho AM^2=BM^2 + CM^2. Tính số đo góc BMC
Bài 6: Cho hình bình hành ABCD. Trên các cạnh BC và AB ta lấy lần lượt hai điểm M và N sao cho AM=CN. Chứng minh SADC = SCDN từ đó suy ra D cách đều AM và CN