Cho hình bình hành ABCD. Trên các cạnh AB và CD lần lượt lấy các điểm MvàN sao cho AM = DN. Đường trung trực của BM lần lượt cắt các đường thẳng MN và BC tại E và F.
a) Chứng minh E và F đối xứng với nhau qua AB.
b) Chứng minh tứ giác MEBF là hình thoi
c) Hình bình hành ABCD có thêm điều kiện gì để tứ giác BCNE là hình thang cân.
1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.
2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.
3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN
4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.
5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3
Cho hình vuông ABCD có cạnh là a. M là một điểm nằm trên đường chéo BD; E,F là hình chiếu của M trên AB và AD; BF và CE cắt nhau tại I.
a/ Chứng minh: CE=BF, CM=EF
b/ Chứng minh: Khi M thay đổi trên BD thì I luôn cách 1 điểm cố định một khoảng bằng a/2. Hãy tìm điểm cố định đó
c/ Chứng minh: Các đường thẳng: BF, CM, DE đồng quy
Cho hình bình hành ABCD trên cạnh AB và CD lần lượt lấy các điểm M và N sao cho AM=DN Đường trung trực của BM lần lượt cắt các đường thẳng MN và BC tại E và F Chứng minh rằng
a) E và F đối xứng qua AB
b) Tứ giác MEBF là hình thoi
c) Hình bình hành ABCD phải có điều kiện gì để tứ giác BCNE là hình thang cân
1. Cho tam giác ABC cân tại A. Trên cạnh AC lấy điểm E, AB lấy điểm D sao cho AD=EC. I là trung điểm ED. AI cắt BC tại K. chứng minh AEKD là hình bình hành
2.Gọi M là 1 điểm bất kỳ trên đoạn AB. Vẽ về một phía của AB các hình vuông AMCD,BMEF. Gọi H là giao điểm AE và BC. a)Chứng minh: D,H,F thắng hàng b)Chứng minh: đường thẳng DF luôn đi qua một điểm cố định khi M chuyển động trên đoạn AB cố định
Cho hình bình hành ABCD trên cạnh AB và CD lần lượt lấy các điểm M và N sao cho AM=DN Đường trung trực của BM lần lượt cắt các đường thẳng MN và BC tại E và F Chứng minh rằng
a) E và F đối xứng qua B
b) Tứ giác MEBF là hình thoi
c) Hình bình hành ABCD phải có điều kiện gì để tứ giác BCNE là hình thang cân
Cho hình vuông ABCD. M là điểm chuyển động trên đưởng chéo BD. E, F lần lượt là hình chiếu của M trên AB và AD . Chứng minh rằng:
a) Chi vi AEMF không đổi
b) Đường thẳng đi qua M và vuông góc với EF luôn đi qua một điểm cố định
Cho tam giác ABC. Gọi E,F lần lượt là trung điểm của các đoạn thẳng AC và AB. M là điểm tùy ý trên cạnh BC. K là điểm đối xứng với M qua E.
1. Chứng minh tứ giác AMCK là hình bình hành.
2. Chứng minh EF đi qua trung điểm Q của AM.
3. Gọi I là điểm đối xứng với Q qua M. Chứng minh khi M di chuyển thì I luôn di chuyển trên một đường thẳng cố định
Cho hình thoi ABCD có góc ∠A = 60o. Gọi E, F, G, H lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Chứng minh rằng đa giác EBFGDH là lục giác đều.