cho hình thang vuông ABCD ( A = D 90 độ) có CD = 2AB. Kẻ DE vuông góc với AC tại E. Gọi H và K thứ tự là trung điểm của DE và CE.
1. Cm ABKH là hbh
2. Cm H là trực tâm của tam giác ADK rồi tính số đo góc BKD.
3. Hai đường chéo AC, BD của hình thang ABCD có đkiện gì thì tứ giác ABKH là hình thoi?
Bài 1 : Cho tam giác ABC nhọn. Vẽ ở phía ngoài tam giác các hình vuông ABDE, ACFH. Gọi O là giao điểm của BH và EC. Chứng minh
1. Tam giác EAC bằng tam giác BAH
2.EH vuông góc với BH
3.D, O, F thẳng hàng
Bài 2: phân tích các đa thức sau thành nhân tử :
1) 7x(x-5)-x(5-x)
2) x4 + 3x3+x+3
3) x4 + 64
Bài 3: Cho hình thang vuông ABCD (A=D=900) có CD =2AB. Kẻ DE vuông góc với AC tại E. Gọi H và K theo thứ tự là Trung điểm của DE và CE.
1. Chứng minh tứ giác ABKH là hình bình hành
2. Chứng minh H là trực tâm của tam giác ADK rồi tính số đo góc BKD .
3. Hai đường chéo AC và BD của hình thang ABCD có điều kiện gì thì tứ giác ABHK là hình thoi?
Cho hình thang ABCD, kẻ AH vuông góc AB, cắt BD tại H, kẻ BK vuông góc AC tại K.
a ) Tứ giác ABKH là hình gì ?
b ) Gọi E là trung điểm AB, F là trung điểm CD. I và G theo thứ tự là giao của AC với BD, của CH với DK.
Chứng minh : E, I, G, H thẳng hàng
1. Cho hình chữ nhật ABCD, M là trung điểm BC, AM cắt DC tại E.
a/ chứng minh tứ giác ABEC là hình bình hành
b/ Qua D vẽ đường thẳng song song với BE, đường này cắt BC tại I. Cmr tứ giác BEID là hình thoi.
c/Gọi O là giao điểm của AC và BD, K là trung điểm của IE. Cmr C là trung điểm của OK.
2. Cho tam giác ABC nhọn (AB < AC), trực tâm H. Gọi M là trung điểm của BC, K là điểm đối xứng với H qua M.
a/ Cmr BHCK là hình bình hành.
b/ Cmr BK vuông góc với AB, Ck vuông góc với AC.
c/ Gọi i là điểm đối xứng H qua BC. Cmr BIKC là hình thang cân.
d/ BK cắt HI tại G. Tìm điều kiện của tam giác ABC để GHCK là hình thang cân.
chiều mình học rồi ạ.
1. Cho hình chữ nhật ABCD, M là trung điểm BC, AM cắt DC tại E.
a/ chứng minh tứ giác ABEC là hình bình hành
b/ Qua D vẽ đường thẳng song song với BE, đường này cắt BC tại I. Cmr tứ giác BEID là hình thoi.
c/Gọi O là giao điểm của AC và BD, K là trung điểm của IE. Cmr C là trung điểm của OK.
2. Cho tam giác ABC nhọn (AB < AC), trực tâm H. Gọi M là trung điểm của BC, K là điểm đối xứng với H qua M.
a/ Cmr BHCK là hình bình hành.
b/ Cmr BK vuông góc với AB, Ck vuông góc với AC.
c/ Gọi i là điểm đối xứng H qua BC. Cmr BIKC là hình thang cân.
d/ BK cắt HI tại G. Tìm điều kiện của tam giác ABC để GHCK là hình thang cân.
1. Cho hình chữ nhật ABCD, M là trung điểm BC, AM cắt DC tại E.
a/ chứng minh tứ giác ABEC là hình bình hành
b/ Qua D vẽ đường thẳng song song với BE, đường này cắt BC tại I. Cmr tứ giác BEID là hình thoi.
c/Gọi O là giao điểm của AC và BD, K là trung điểm của IE. Cmr C là trung điểm của OK.
2. Cho tam giác ABC nhọn (AB < AC), trực tâm H. Gọi M là trung điểm của BC, K là điểm đối xứng với H qua M.
a/ Cmr BHCK là hình bình hành.
b/ Cmr BK vuông góc với AB, Ck vuông góc với AC.
c/ Gọi i là điểm đối xứng H qua BC. Cmr BIKC là hình thang cân.
d/ BK cắt HI tại G. Tìm điều kiện của tam giác ABC để GHCK là hình thang cân.
Cho tứ giác ABCD có K,E,F,G lần lượt là trung điểm của các cạnh AB,BC,CD,DA. Chứng minh:
a) Tứ giác AKEC là hình thang.
b) Tứ giác KEFG là hình bình hành.
c) Tìm điều kiện của hai đường chéo AC,BD để tứ giác KEFG là hình thang.
d) Kẻ BH vuông góc AC. Biết BH=10cm, AC=15cm. Tính diện tích tam giác ABC.
Cho hình thang vuông ABCD có AB // CD, DC = 2AB, AD vuông góc AB. Kẻ AH vuông góc AC tại H, M tương ứng là trung điểm của HD và HC, AM cắt DN tại K, E là trung điểm của DC
1. Chứng minh ABNM là hình bình hành
2. Chứng minh M là trực tâm của tam giác DAN
3. Chứng minh BN vuông góc với ND và MN đi qua trung điểm của HE
Giúp mình nha, thanks nhìu ^^
Bài 7: Cho tam giác ABC có AB=6, AC=8, BC=10.
a) Xác định D sao cho BDCA là hình vuông.
b) Tính độ dài DA.
c) Tính diện tích ABCD.
Bài 8: Cho hình thang ABCD. Hai đường chéo AC và BD cắt nhau tại O.
a) Xác định O để ABCD là hình bình hành.
b) Hình bình hành ABCD cần thêm điều kiện gì để trở thành hình thoi.
c) Cho hình thoi ABCD có góc ABC=90 0 . Hỏi tứ giác ABCD đã trở thành hình
gì?
Bài 9: Cho tam giác ABC, trung tuyến AM. Gọi D là trung điểm của AB, M’ là
điểm đối xứng với M qua D.
a) Chứng minh điểm M’ dối xứng với M qua AB.
b) Các tứ giác AEMC, AEBM là hình gì? Vì sao?
c) Cho BC = 4cm, tính chu vi tứ giác AM’BM. Tam giác ABC thỏa mãn điều
kiện gì để tứ giác AEBM là hình vuông.
Bài 10: Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Gọi D, E là các hình
chiếu của H trên AB, AC và M, N theo thứ tự là các trung điểm của các đường thẳng
BH, CH.
a) Chứng minh tứ giác MDEN là hình thang vuông.
b) Gọi P là giao điểm của đường thẳng DE với đường cao AH và Q là trung điểm
của đường thẳng MN. Chứng minh PQ vuông góc DE.
c) Chứng minh hệ thức 2PQ = MD + NE.
Bài 11: Cho tam giác ABC vuông tại A. Kẻ đường cao AH, dựng hình chữ nhật
AHBD và AHCE. Gọi P, Q theo thứ tự là trung điểm của AB, AC. Chứng minh:
a) Ba điểm D, A, E thẳng hàng.
b) PQ là trung trực của đoạn thẳng AH.
c) Ba điểm D, P, H thẳng hàng.
d) DH vuông góc EH.
Bài 12: Cho tam giác ABC phía ngoài tam giác, ta dựng các hình vuông ABDE và
ACFG.
a) Chứng minh BG = CE Va BG vuông góc CE.
b) Gọi M, N theo thứ tự là các trung điểm của các đường thẳng BC, EG và Q, N
theo thứ tự là tâm của các hình vuông ABDE, ACFG. Chứng minh tứ giác
MNPQ là hình vuông.