cho hình thang cân abcd có hai đáy ab song song cd gọi i là giao điểm của 2 đường chéo ac và bd đường trung trực của ad và di cắt nhau tại o chứng minh rằng oi vuông góc cới bc
cho hình thang cân abcd có hai đáy ab song song cd gọi i là giao điểm của 2 đường chéo ac và bd đường trung trực của ad và di cắt nhau tại o chứng minh rằng oi vuông góc cới bc
1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:
a, =
B, =*
c, =
3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM
Cho hình thang cân ABCD ( AB//CD, AB<CD). Gọi O là giao điểm của 2 đoạn thẳng AD và BC.
a. Chứng minh tam giác OAN cân
b.Gọi I là trung điểm của AB, gọi K là trung điểm của CD. Chứng minh 3 điểm O,I,K thẳng hàng.
c.Qua điểm M thuộc cạnh AD. Kẻ đường thẳng song song với CD nó cắt BC tại N. Chứng minh MNCD là hthang cân.
1, Cho tam giác ABC vuông tại A, đường cao AH. Gọi I là trung điểm của AH, đường vuông góc với BC tại C cắt đường thẳng BI tại D. chứng minh AD=DC?
2,Cho tứ giác ABCD, O là giao điểm của 2 đường chéo. Từ một điểm I bất kì trên đường chéo BD ta vẽ đường thẳng song song với đường chéo AC, đường thẳng này cắt các cạnh AB,BC tại P, Q và cắt các tia DA, DC tại S, R.chứng minh:
A, IP/OA=IB/OB
B, IP/IS=IB/ID*OD/OB
C, IP/IS=IQ/IR
3, cho hình thang ABCD (AB//CD) có M là giao điểm của AD và BC, N là giao điểm hai đường chéo. Gọi I, K theo thứ tự là giao điểm của MN với AB, CD. Chứng minh I là trung điểm của AB, K là trung điểm của CD
4, cho tam giác ABC có AB<AC, đường phân giác AD, đường trung tuyến AM. Trên cạnh AC lấy điểm E sao cho AE=AB. gọi O, G theo thứ tự là giao điểm của BE với AD, AM.
a, chứng minh DG//AB
b, gọi I là giao điểm của MO với DG. chứng minh DG=IG
5, cho tam giác ABC có AB=5 cm, AC=7 cm, đường trung tuyến AM. lấy điểm E thuộc cạnh AB, điểm F thuộc cạnh AC sao cho AE=AF= 3 cm. gọi I là giao điểm của EF và AM .chứng minh I là trung điểm của AM
Cho hình chữ nhật mnpq.Từ n kẻ đường thẳng song song với đường chéo mp cắt tia qp tại e.a)CM:tứ giác mnep là hình bình hành.b)Gọi h là giao điểmcủa mp và nq,i là giao điểm của me và np.CM hi=1/2mn.Tam giác nqe là tam giác gì?Vì sao?c)Gọi f là trung điểm của ne.CM tứ giác nhpf là hình thoi.d)CM ba điểm h,i,f thẳng hàng.d)Hình chữ nhật mnpq cần có thêm điều kiện gì để hình thoi nhpf là hình vuông
Hình bình hành MNPQ ( MN song song PQ). I là giao điểm của MP và NQ . Qua I kẻ đường thẳng song song với MN cắt MQ ở E và cắt NP ở F . Chứng minh I là trung điểm của EF
Cho hình vuông ABCD, O là giao hai đường chéo .qua A kẻ đường thẳng song song với DB .Qua B kẻ đường thẳng song song với AC ,chúng cắt nhau tại M . lấy N là điểm đối xứng của M qua A, E là điểm đối xứng của M qua B. a .CM: E,O,N thẳng hàng. b. Tứ giác AECN là hình j? Vì sao. c. Gọi I là trung điểm CD, K là trung điểm BC. Giao AI và DK là Q. Chứng minh tứ giác AQKM là hình thang vuông