a) Chứng minh ABCD và ADKC là các tứ giác nội tiếp.
b) Từ câu a suy ra \(\widehat{CKB}=\widehat{CDB}\).Ta lại có
\(\widehat{CKE}=\widehat{ECA}=\widehat{CDB}\)
Suy ra\(\widehat{CKB}=\widehat{CKE}\), do đó K, E, B thẳng hàng.
a) Chứng minh ABCD và ADKC là các tứ giác nội tiếp.
b) Từ câu a suy ra \(\widehat{CKB}=\widehat{CDB}\).Ta lại có
\(\widehat{CKE}=\widehat{ECA}=\widehat{CDB}\)
Suy ra\(\widehat{CKB}=\widehat{CKE}\), do đó K, E, B thẳng hàng.
Cho hai đường tròn (O) và (O’) cắt nhau tại A và B. Dây AC của đường tròn (O) tiếp xúc với đường tròn (O’) tại A. Dây AD của đường trong (O’) tiếp xúc với đường tròn (O) tại A. Gọi K là điểm đối xứng với A qua trung điểm I của OO’, E là điểm đối xứng với A qua B. Chứng minh rằng: Bốn điểm A, C, E, D cùng nằm trên một đường tròn
Từ điểm A ở ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến (O) với B, C là các tiếp điểm. Kẻ một đường thẳng d nằm giữa hai tia AB, AO và đi qua A cắt đường tròn (O) tại E, F (E nằm giữa A, F).
1. Chứng minh bốn điểm A, B, O, C cùng thuộc một đường tròn.2. Gọi H là giao điểm của AD và BC. Chứng minh OH.OA = OE^2.3. Đường thẳng qua O vuông góc với EF cắt BC tại E. Chứng minh SF là tiếp tuyến của đường tròn (O).4. Đường thẳng SF cắt các đường thẳng AB và AC tương ứng tại P và Q. Đường thẳng OF cắt BC tại K. Chứng minh rằng AK đi qua trung điểm của PQ.Cho tam giác ABC cân tại A , D là 1 điểm thuộc cạnh BC, qua D vẽ đường tròn ( O,R) tiếp xúc với AB tại B VÀ (O'R;) tiếp xúc với AC tại C , K là giao điểm thứ 2 của 2 đường tròn này
a) CM: tg ABKC nội tiếp
b) A,K,D thẳng hàng
c) độ dài 2 đường thẳng ko phụ thuộc vào vị trí điểm D
mọi người giúp mình với mình cần gấp ạ
Cho đường tròn tâm O và một điểm A nằm ngoài đường tròn này. Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a. Chứng minh OA vuông góc với BC tại H.
b. Từ B vẽ đường kính BD của (O), đường thẳng AD cắt đường tròn(O) tại E (E khác D). Chứng minh: AE.AD = AC^2
c. Qua O vẽ đường thẳng vuông góc với cạnh AD tại K và cắt đường BC tại F. Chứng minh rằng FD là tiếp tuyến của đường tròn (O).
Cho đường tròn tâm O và dây BC không đi qua O. Điểm A chuyển động rên cung lớn . Vẽ đường tròn tâm I đi qua điểm B và tiếp xúc với AC tại A. Vẽ đường tròn tâm K đi qua điểm C và tiếp xúc với AB tại A.CMR:
a) 4 điểm B,D,O,C cùng thuộc 1 đường tròn.
b) Đường thẳng AD luôn đi qua 1 điểm cố định.
cho đường tròn (O;R) và điểm A nằm ngoài đường tròn. từ A vẽ 2 tiếp tuyến AB,AC (B; c là các tiếp điểm). gọi H là giao điểm OA và BC
a) Qua O vẽ đường vuông góc với OB cắt AC tại M. cm tam giác AMO cân
b) qua A vẽ đường thẳng không đi qua tâm cắt đường tròn (O) tại E và F (E nằm giữa A và F), K là trung điểm EF, tia OK cắt BC tại S. cm: SE là tiếp tuyến của (O)
Cho M nằm ngoài (O;R). Tia MO cắt (O) lần lượt tại A và B. Gọi K là điểm nằm giữa O và B. Vẽ đường thẳng d AB tại K. Tiếp tuyến MC với (O) cắt d tại D (C là tiếp điểm), BC cắt d tại N. a) Chứng minh: CDKO nội tiếp. b) Chứng minh MC2 =MA. MB. c) Chứng minh: DCN cân. d) Gọi F là giao điểm của AD và (O), E là giao điểm của AC và d. Chứng minh: D, E, C, F cùng nằm trên một đường tròn.
giups minh cau 1d, 2c , cam on nhieu
1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.
a) Chứng minh AEHF nội tiếp
b) Chứng minh EC là tia phân giác của góc DEF
c) Đường thẳng EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MD
d) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của (O)
e) Đường thẳng qua D song song với MF, cắt AB và AC lần lượt tại K và L. Chứng minh : M, K, L, O cùng thuộc một đường tròn.
2. Từ một điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB và AC đến (O) (B và C là các tiếp điểm) và một cát tuyến ADE không đi qua tâm O (D nằm giữa A và E), gọi I là trung điểm của DE.
a) Chứng minh 5 điểm A;B;O;I;C cùng nằm trên một đường tròn suy ra IA là phân giác của góc BIC
b) BC cắt AE tại K. Chứng minh KA.KI=KD.KE
c) Qua C kẻ đường thẳng song với AB, đường này cắt các đướng thẳng BE, BD lần lượt tại P và Q. Chứng minh C là trung điểm của PQ.
d) Đường thẳng OI cắt đường tròn (O) tại S và H. Đường thẳng HK cắt (O) tại điểm thứ hai là T. Chứng minh 3 điểm A, T, S thẳng hàng
Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.
a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp
b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN
Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.
a) C/m: MOCD là hình bình hành
b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.
Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).
a) C/m: MI là tiếp tuyến của (O)
b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.