Lời giải:
Xét tam giác $ADH$ và $BCK$ có:
$\widehat{AHD}=\widehat{BKC}=90^0$
$\widehat{ADH}=\widehat{BCK}$ (do $ABCD$ là htc)
$AD=BC$ (do $ABCD$ là htc)
$\Rightarrow \triangle ADH=\triangle BCK$ (ch-gn)
$\Rightarrow DH=CK$
Áp dụng định lý Pitago cho tam giác $ADH$ vuông:
$AH=\sqrt{AD^2-DH^2}=\sqrt{10^2-6^2}=8$ (cm)
Từ tam giác bằng nhau ở trên suy ra $BK=AH=8$ (cm)