Xét \(\Delta\)ABC có: E, I là trung điểm AB, BC
\(\Rightarrow\) EI là đường trung bình tam giác ABC
\(\Rightarrow\) EI//AC, EI=1/2AC
Chứng minh tương tự: MK//AC, MK=1/2AC
\(\Rightarrow\) EI//MK, EI=MK
\(\Rightarrow\) tứ giác EIKM là hình bình hành (1)
ta có: EA=EB, \(\widehat{A}\)=\(\widehat{B}\), BI=MA(do AD=BC)
\(\Rightarrow\) \(\Delta\)AEM=\(\Delta\)BEI
\(\Rightarrow\) EM=EI(2)
Từ (1), (2)
\(\Rightarrow\) tứ giác EIKM là hình thoi
Để hình thoi EIKM là hình vuông thì EM\(\perp\)EI
\(\Rightarrow\) AC⊥BD
\(\Rightarrow\) hình thang ABCD có 2 đường chéo vuông góc với nhau
Vậy hình thang ABCD có đường chéo vuông góc với nhau thì EIKM là hình vuông.
#Shinobu Cừu