Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Cô Hoàng Huyền

Cho hình thang cân $ABCD$ ($AB > CD$; $AB//CD$) nội tiếp đường tròn $(O)$. Tiếp tuyến với đường tròn $(O)$ tại $A$ và $D$ cắt nhau tại $I$. Gọi $E$ là giao điểm của hai đường chéo $AC$ và $BD$.

a) Chứng minh tứ giác $AIDE$ nội tiếp.

b) Chứng minh $AB//IE$.

c) Đường thẳng $IE$ cắt cạnh bên $AD$ và $BC$ của hình thang tương ứng tại $M$ và $N$. Chứng minh rằng:

        +  $E$ là trung điểm $MN$.

        + \(\dfrac{1}{AB}+\dfrac{1}{CD}=\dfrac{2}{MN}\).

Lê Hiền Trang
22 tháng 3 2021 lúc 15:34

1. Ta có:
ED,EAED,EA là tiếp tuyến của (O)

→ED⊥OD,EA⊥OA⇒ˆADE=ˆOAE=90o→ED⊥OD,EA⊥OA⇒ADE^=OAE^=90o

EDOAEDOA có ˆADE+ˆOAE=180oADE^+OAE^=180o

⇒EDOA⇒EDOA nội tiếp đường tròn đường kính (OE)

→ˆDOA+ˆDEA=180o→DOA^+DEA^=180o

Mà ABCDABCD là hình thang cân

→ˆDMA=ˆDBA+ˆCAB=2ˆDBA=ˆDOA→DMA^=DBA^+CAB^=2DBA^=DOA^

→ˆDMA+ˆAED=180o→AEDM→DMA^+AED^=180o→AEDM nội tiếp được trong một đường tròn

2. Từ câu 1

→ˆEMA=ˆEDA=ˆDBA=ˆCAB→EMA^=EDA^=DBA^=CAB^

Vì EDED là tiếp tuyến của (O),ABCDABCD là hình thang cân

→EM//AB→EM//AB

3. Ta có:

EM//AB→HK//AB→HMAB=DMDB=CMCA=MKABEM//AB→HK//AB→HMAB=DMDB=CMCA=MKAB

→MH=MK→M→MH=MK→M là trung điểm HK

image

Khách vãng lai đã xóa

Các câu hỏi tương tự
Cô Hoàng Huyền
Xem chi tiết
Cô Hoàng Huyền
Xem chi tiết
Cô Hoàng Huyền
Xem chi tiết
Cô Hoàng Huyền
Xem chi tiết
Cô Hoàng Huyền
Xem chi tiết
Cô Hoàng Huyền
Xem chi tiết
Cô Hoàng Huyền
Xem chi tiết
Cô Hoàng Huyền
Xem chi tiết