Cho hình thang cân $ABCD$ ($AB > CD$; $AB//CD$) nội tiếp đường tròn $(O)$. Tiếp tuyến với đường tròn $(O)$ tại $A$ và $D$ cắt nhau tại $I$. Gọi $E$ là giao điểm của hai đường chéo $AC$ và $BD$.
a) Chứng minh tứ giác $AIDE$ nội tiếp.
b) Chứng minh $AB//IE$.
c) Đường thẳng $IE$ cắt cạnh bên $AD$ và $BC$ của hình thang tương ứng tại $M$ và $N$. Chứng minh rằng:
+ $E$ là trung điểm $MN$.
+ \(\dfrac{1}{AB}+\dfrac{1}{CD}=\dfrac{2}{MN}\).
1. Ta có:
ED,EAED,EA là tiếp tuyến của (O)
→ED⊥OD,EA⊥OA⇒ˆADE=ˆOAE=90o→ED⊥OD,EA⊥OA⇒ADE^=OAE^=90o
EDOAEDOA có ˆADE+ˆOAE=180oADE^+OAE^=180o
⇒EDOA⇒EDOA nội tiếp đường tròn đường kính (OE)
→ˆDOA+ˆDEA=180o→DOA^+DEA^=180o
Mà ABCDABCD là hình thang cân
→ˆDMA=ˆDBA+ˆCAB=2ˆDBA=ˆDOA→DMA^=DBA^+CAB^=2DBA^=DOA^
→ˆDMA+ˆAED=180o→AEDM→DMA^+AED^=180o→AEDM nội tiếp được trong một đường tròn
2. Từ câu 1
→ˆEMA=ˆEDA=ˆDBA=ˆCAB→EMA^=EDA^=DBA^=CAB^
Vì EDED là tiếp tuyến của (O),ABCDABCD là hình thang cân
→EM//AB→EM//AB
3. Ta có:
EM//AB→HK//AB→HMAB=DMDB=CMCA=MKABEM//AB→HK//AB→HMAB=DMDB=CMCA=MKAB
→MH=MK→M→MH=MK→M là trung điểm HK